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2 Blackbody and Thermal Radiation

Blackbody radiation is a type of thermal radiation that is emitted by an
ideal body whose property is to emit (and absorb) every frequency of
radiation with perfect efficiency. In simpler terms, a blackbody is the
ideal perfect emitter/absorber. As we will see, this type of radiation
is fundamental in order to understand any other type of radiation. A
common myth that can be found in different textbooks and that is re-
peated over and over again is that blackbody radiation spectrum emerges
directly from basic principles of quantum mechanics and it cannot be ex-
plained classically. Although the blackbody radiation was explained by
M. Planck by quantizing the energy of photons emitted by atoms, the
release of an arbitrarily high amount of energy, sometimes called the
ultraviolet catastrophe, was something well understood at the time. In-
deed the limitations of Rayleigh’s formula and the equipartition theorem
were very well known and understood by the physicists of the time and
it was clearly stated in Rayleigh’s work that the formula (leading to the
ultra-violet catastrophe) was valid only in the low-frequency regime and
could not be applied to the entire energy spectrum.

Beside this historical note, the great merit of M. Planck was to under-
stand that atoms need not to emit a continuous energy range, even if the
classical physics of the time had no clear justification for this assumption.

To understand blackbody and thermal radiation we will proceed by
first outlining the laws of thermodynamics. From these, we will define
the concept of thermal equilibrium which is essential to understand what
is meant by thermal radiation (and blackbody radiation) and to derive
its main properties. Finally, we will use the derived properties of thermal
radiation to solve the equation of radiative transport and to do so we
will use the so-called radiative diffusion approximation which has a broad
applicability in astrophysical settings. For example, this type of approach
is useful to describe radiation emitted by stars, accretion disks, nebulae,
stellar atmospheres and many other astrophysical environments.

1



2 Blackbody and Thermal Radiation

2.1 Laws of Thermodynamics
The first law of thermodynamics (conservation of energy) states that
energy can be transformed from one form to another, but it cannot be
created or destroyed:

𝑑𝑈 = 𝑑𝑄 − 𝑑𝑊 (2.1)

where 𝑑𝑈 is the infinitesimal change in internal energy of the system,
𝑑𝑄 is the heat added to the system and 𝑑𝑊 is the work done by the
system.

The second law of thermodynamics relates the heat transfer between
two bodies with their temperature and entropy. The second law refer to
the fact that heat cannot be transferred from a colder to a hotter body
without some other change occurring at the same time:

𝑑𝑆 = 𝑑𝑄
𝑇 (2.2)

These two laws are logically preceded by the Zeroth law of thermo-
dynamics, which defines the concept of temperature of a body and the
meaning of thermal equilibrium. It can be proved experimentally that a
high temperature object in contact with a low temperature object trans-
fers heat to the lower temperature object. The temperature of the two
bodies will approach the same value and remain constant over time (in
absence of losses or other external influences). When this constant tem-
perature is reached, the two bodies are said to be in thermal equilibrium.

There is a great deal of confusion when discussing thermal equilib-
rium since it is often used as a synonym for thermodynamic equilibrium.
However, these two concepts are different although related. A body in
thermodynamic equilibrium has reached thermal equilibrium as well as
mechanical, chemical and radiative equilibrium. This means that two
bodies in thermodynamic equilibrium need to have achieved the same
temperature, pressure, chemical potentials and there must be a zero net
flux of radiation. The radiative equilibrium condition can be expressed
as:

ℎ = ∫
∞

0
ℎ𝜈𝑑𝜈 = 0 (2.3)

where ℎ𝜈 is equal to the negative monochromatic gradient of the flux:

ℎ𝜈 = −∇𝐹𝜈 (2.4)
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2.2 Equipartition Theorem

2.2 Equipartition Theorem
A powerful result of statistical mechanics is that when a system is in
thermal equilibrium, its energy is shared equally amongst all its accessible
degrees of freedom. Remember that the degree of freedom correspond to
the dimension of the phase space, the latter being the space representing
the set of all possible accessible states of a system. When the degree of
freedom is quadratic in the energy, then the average energy of each degree
of freedom is equal to 1

2 𝑘B𝑇 . For an ensemble of particles moving in three
dimensions and in thermal equilibrium, the total average translational
kinetic energy per particle is therefore:

𝐸𝑘 = 3
2𝑘B𝑇 . (2.5)

This value is useful to try to understand the effect of matter and radiation
interacting under the conditions of thermal equilibrium. Indeed a photon
has an energy of 𝐸ph = ℎ𝜈 that can be compared with the expression
of the average kinetic energy above. If for example a monochromatic
photon field with average energy 𝐸ph interacts with matter with average
translational kinetic energy 𝐸𝑘 and 𝐸ph ≪ 𝐸𝑘, then when the radiation
is absorbed by matter, the net contribution of the photon field to the
total energy of the system will be small and the energy of the photon
field will be quickly redistributed across the degrees of freedom of the
absorbing material. In this case one can say that the radiation has been
thermalized by matter.

2.3 Thermal Equilibrium
As we have seen in the previous sections, the definition of thermal equi-
librium is given by the Zeroth law of thermodynamics. A practical in-
terpretation of thermal equilibrium is that a body that has reached this
state will absorb as much energy as it emits. If it is unable to absorb
enough energy to compensate its emission, then it will cool down until
it reaches the same temperature of the surroundings. If it absorbs more
energy that it is able to emit then it will heat up until reaching the same
temperature of its surroundings.

Thermal equilibrium applies to both matter and radiation. Matter
in thermal equilibrium obeys the Zeroth law of thermodynamics and
the velocities of the particles are not the same but follow the Maxwell-
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2 Blackbody and Thermal Radiation

Boltzmann distribution:

𝐹(𝑣)𝑑𝑣 = 4𝜋𝑣2 ( 𝑚
2𝜋𝑘𝑇 )

3/2
𝑒−𝑚𝑣2/2𝑘𝑇 𝑑𝑣 (2.6)

where 𝑣 is the velocity of the particle and 𝑚 its mass. The Maxwell-
Boltzmann distribution written in this way is valid for non-relativistic
particles, but many astrophysical systems involve speeds which are a
significant fraction of the speed of light.

In that case the same physical principles apply but the distribution
need to be adapted to account for the relativistic effects thus arising. It
is possible to generalize the Maxwell-Boltzmann distribution such that
it can correctly describe both relativistic and non-relativistic systems.
Instead of using the velocity of the particle, it is more convenient to use
the momentum 𝑝 whose relativistic expression is:

𝑝 = 𝛾𝛽𝑚𝑐 (2.7)

where 𝛽 = 𝑣/𝑐 and 𝛾 = 1/√1 − 𝛽2. The general expression for the
Maxwell Boltzmann equation then becomes:

𝐹(𝑝)𝑑𝑝 = 𝑝2𝑒−𝛾Θ

Θ𝑚3𝑐3𝐾2(1/Θ)𝑑𝑝 (2.8)

where Θ = 𝑘𝑇 /𝑚𝑐2 and 𝐾2 is the modified Bessel function of the second
kind. This relativistic expression is sometimes also called the Maxwell-
Jüttner equation.

For radiation to be in thermal equilibrium a necessary condition is that
it is emitted by matter in thermal equilibrium. However, this condition is
not sufficient since there is also another important condition that needs
to be met in order to reach thermal equilibrium. Indeed if the photons
are emitted by matter in thermal equilibrium and they are immediately
free to escape the system without further interactions, then the radia-
tion emerging will not be in thermal equilibrium, even if the radiation
is thermal radiation. Photons need to be absorbed and emitted many
times before escaping the system in order to be considered in thermal
equilibrium with matter. This will become more clear in the following
sections, when we will discuss the principle of detailed balance.

2.4 Blackbody Radiation
Blackbody radiation is a type of idealized radiation emitted by a body
that can absorb radiation at all wavelengths with maximum efficiency
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2.4 Blackbody Radiation

(no reflection). When a blackbody is in thermal equilibrium, it must
emit radiation to obey the Zeroth law of thermodynamics and maintain
a constant temperature. The emission occurs also with maximum effi-
ciency, in the sense that no other body can emit thermal radiation with
an efficiency higher than a blackbody. Therefore the blackbody is the
perfect absorber and the perfect emitter of thermal radiation.

To create a real version of a body with properties as close as possible
to that of the ideal blackbody emitter, it is useful to consider a closed
enclosure of arbitrary shape with thick walls so that any radiation inside
it cannot escape. If one waits a sufficiently long time, the enclosure
will reach thermal equilibrium at temperature 𝑇 . This means that both
radiation and matter have reached a thermal equilibrium since matter
will have reached a constant temperature and the radiation it emits is
also in thermal equilibrium by definition, since all radiation emitted will
also be absorbed and re-emitted many times.

If one opens a small hole in the enclosure, small enough so that any
radiation escaping is only a tiny fraction of the total, the thermal equilib-
rium will be maintained. The radiation escaping from the small hole is a
very close real life version of the idealized blackbody emission. This hap-
pens regardless of the material composing the enclosure and regardless
of the shape and objects present within the enclosure. To demonstrate
this property, imagine to attach to the first enclosure a second one at
the same temperature 𝑇 with similar characteristics (arbitrary shape,
thermal equilibrium and a small hole on its walls). The two enclosures
should be positioned so that the two small holes can face each others, so
that radiation from one hole can in principle enter in the other hole. To
simplify the problem, one can place a narrow pass-band filter between
the two holes in order to allow only a specific frequency 𝜈 to pass through
and block any other radiation frequency. Since we are considering only
one frequency we can consider the specific brightness of the first hole
at the filter frequency 𝜈 and call it 𝐼𝜈 and the specific brightness of the
second hole as 𝐼′

𝜈. If radiation flows from the first to the second enclo-
sure, then let´s call the amount of heat associated with this radiation
exchange as 𝛿𝑄. The entropy of the first enclosure must now decrease
and the entropy of the second enclosure must increase according to the
second law of thermodynamics. The total change in entropy of the whole
system is the sum of the two:

𝑑𝑆 = 𝛿𝑄
𝑇1

− 𝛿𝑄
𝑇2

(2.9)
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2 Blackbody and Thermal Radiation

where the subscripts 1 and 2 refer tot the first and second enclosures. But
since we have said that the two enclosures are in thermal equilibrium and
have the same temperature, the change in entropy of the system is exactly
zero. Furthermore, no heat would have flowed in the first place because
of thermal equilibrium. Therefore there cannot be any net flow of energy
between the two enclosures or the system is violating the second law
of thermodynamics. Therefore the two values of the specific brightness
must be the same and so 𝐼𝜈 = 𝐼 ′

𝜈. Since the frequency 𝜈 has been chosen
arbitrarily, this property of the specific brightness has to be true for every
spectral component.

Another important property of blackbody radiation is that it is isotropic
and homogeneous, meaning that the flux of radiation must be the same
in every direction ed in every location. To demonstrate isotropy we can
use a counterargument to show that it leads to unphysical conditions in-
side one cavity. For example, let’s suppose that the radiation propagates
from left to right with an intensity higher than the radiation propagating
in the bottom-top direction. We can now introduce two identical bodies
(same mass, shape, material etc.) within the enclosure and wait that
they both reach thermal equilibrium. Let’s also suppose that these two
bodies are small enough so that they do not introduce a significant per-
turbation to the radiation energy density within the enclosure (in other
words we can use them as test bodies for our experiment). We can po-
sition the two bodies in such a way that one intercepts more radiation
going from let to right and the other more of the radiation from bottom
to top. For example we can select a rectangular shape for our bodies
and place the first of them such that the longer side is parallel to the
left-right direction and the other body with the longer side aligned to the
bottom-top direction. Since the flux of radiation is more intense in the
bottom-top direction, the first body will become hotter than the second
body in a shorter amount of time. This is a violation of the second law
of thermodynamics since one can use the temperature difference between
the two bodies to create a Carnot cycle between the two bodies and con-
vert heat into work without any other thermodynamic variation of the
system. In other words one can absorb energy from one source (the radi-
ation within the cavity) to continuously produce work. The same would
be true if we filter certain radiation frequencies. Therefore, since this is
a non-physical result, the radiation cannot have a preferred direction of
propagation and so the cavity must be filled with isotropic radiation.

To demonstrate that blackbody radiation is also homogeneous we can
use a similar reasoning with the same two bodies introduced before.
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2.4 Blackbody Radiation

This time let’s check the system after it has achieved thermal equilib-
rium. When this happens, both bodies have to absorb and emit the
same amount of energy. The amount of energy absorbed by each body
depends on the absorption coefficient of each body and by their sur-
face extension. Since both bodies absorb and emit the same quantity
of energy, the energy incident on each of them must be identical. This
quantity depends on the energy density of radiation and on geometrical
factors:

𝑑𝐸𝑖𝑛𝑐 = 𝑢𝜈(𝑇 ) 𝑐 𝑑𝑆 𝑑𝑡 𝑑𝜈 (2.10)
where 𝑑𝑆 is the infinitesimal surface area element of the body. Since
𝑑𝐸inc,1 = 𝑑𝐸inc,2 for body one and two, and since the geometrical factors
are identical for the two bodies, it follows that the energy density must
be the same, 𝑢𝜈,1(𝑇 ) = 𝑢𝜈,2(𝑇 ), regardless of the position of the two
bodies. Thus the energy density of blackbody radiation must be identical
in each point of the cavity which means it is homogeneous. The property
of isotropy and homogeneity applies to any cavity of any shape and
material, so that if the temperature 𝑇 is the same for two cavities of
different shape and material then the energy density of radiation has to
be the same. Once again if this had not been the case then we would
violate the second law of thermodynamics once more. This is true for
each single spectral component of blackbody radiation. This tells us an
important fact: if you measure the specific brightness of a blackbody
emitter at temperature 𝑇1 > 𝑇2 then it must be higher than the value
you obtain for the colder body at any frequency. In other words, plotting
the blackbody specific brightness curve for a body hotter than another,
you would see the curve of the hotter body always above the curve of
the colder body, with the two curves crossing only at the origin and
asymptotically at at infinity.

A final property of blackbody radiation is that it is unpolarized. This
is also a consequence of the laws of thermodynamics, since a blackbody
can absorb all type of radiation and thus has no preferred polarization
state. Another way to demonstrate this principle is by using the fact
that photons obey the Bose-Einstein statistics. The mean occupation
number of each mode of the electromagnetic field is:

𝑛𝑖(𝐸𝑖) = 1
exp(𝐸𝑖/𝑘𝐵𝑇 ) − 1 (2.11)

where 𝐸𝑖 refers to the energy of the 𝑖− 𝑡ℎ mode and 𝑘𝐵 is the Botzmann
constant. Since photons of different polarization have the same energy
(in vacuum) then the occupation number of each mode is the same since it
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2 Blackbody and Thermal Radiation

depends only on the energy of the photon and on the temperature of the
cavity. Therefore the occupation number of each polarization state must
be the same and therefore blackbody radiation emits a statistical mixture
of all polarization states, which is equivalent to unpolarized radiation.

Summarizing, if we have thermal equilibrium between two enclosures
of arbitrary shape and material, the specific brightness is independent
on the properties of the enclosure itself. The only parameter that has an
effect on the specific brightness is just the temperature 𝑇 of the enclo-
sures. The radiation inside the cavity must be isotropic, homogeneous
and unpolarized. The specific brightness 𝐼𝜈 must therefore be a universal
function of the frequency and temperature alone that we call the Planck
function 𝐵𝜈(𝑇 ).

2.5 Properties of the Planck Spectrum
The Planck function describes the specific brightness of a blackbody emit-
ter:

𝐵𝜈(𝑇 ) = 2ℎ𝜈3/𝑐2

exp(ℎ𝜈/𝑘B𝑇 ) − 1 (2.12)

This expression can be derived by ...
Let’s now check the meaning of this expression in detail. The number

’2’ appears in Eq.2.12 because light has two independent polarization
states (left and right circular polarization). The Planck constant ’h’ ap-
pears because of course photons are quantized. The term 1/𝑐2 appears
because photons propagate at the speed of light ’c’ and the square ap-
pears because to calculate a specific brightness one has to multiply the
spectral energy density 𝑢𝜈(𝑇 ) by the speed of light:

𝐵𝜈(𝑇 ) = 𝑢𝜈(𝑇 )𝑐
4𝜋 (2.13)

The numerator of Eq.2.12 is the density of states of photons in a box
2𝜈2/𝑐3 multiplied by the average energy per state:

𝐸avg = ℎ𝜈
exp(ℎ𝜈/𝑘B𝑇 ) − 1 (2.14)

Finally, remember that ”-1” in the denominator is there because photons
are bosons, so there can be multiple photons with the same quantum
number and the use of the Bose-Einstein statistics reflects this fact. It
is also worth noticing that the chemical potential of photons is zero,
otherwise we would have seen an expression like (ℎ𝜈 − 𝜇)/𝑘B𝑇 , where 𝜇
is the chemical potential.
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2.6 Kirchhoff’s Law of Therman Emission

2.6 Kirchhoff’s Law of Therman Emission
When we introduced a body of arbitrary shape and material inside the
enclosure we demonstrated that the radiation escaping from a tiny hole
on a wall is still blackbody radiation. The question now is about the body
inside the cavity, what will be its emission properties? Let’s imagine to
put two bodies of small size and identical shape and surface area inside
the cavity. Let’s call them body 1 and 2 and let’s also suppose that
the two bodies are made by different material. If the first body absorbs
more radiation than the second one, then it has to emit more as well. The
amount of energy absorbed will depend on the energy density 𝑢 around
the bodies (that we have previously shown to be identical because of
homogeneity of blackbody radiation), on the geometrical factors (which
are also identical by construction) and on the absorption coefficient of
each of the two bodies. Therefore the energy absorbed has to be:

𝑑𝐸abs,1 = 𝜉𝑢𝛼𝜈,1 (2.15)
𝑑𝐸abs,2 = 𝜉𝑢𝛼𝜈,2 (2.16)

where 𝜉 is a geometrical factor, identical for the two bodies. The energy
emitted will instead depend on the specific emission coefficient 𝑗𝜈 and by
the geometrical factors, beside the temperature 𝑇 of the enclosure:

𝑑𝐸em,1 = 𝜂𝑗𝜈,1 (2.17)
𝑑𝐸em,2 = 𝜂𝑗𝜈,2 (2.18)

Since at thermal equilibrium the energy absorbed has to be the same as
the energy emitted, it follows that, for a certain temperature 𝑇 we have:

Κ𝜈(𝑇 ) = 𝜉𝑢
𝜂 = 𝑗𝜈,1

𝛼𝜈,1
= 𝑗𝜈,2

𝛼𝜈,2
(2.19)

What is this function 𝐾𝜈(𝑇 )? If the two small bodies have absorption
coefficient equal to one at all wavelengths (perfect absorber) then both
of them will emit as blackbodies once they reach thermal equilibrium.
Therefore it is clear that this universal function 𝐾𝜈(𝑇 ) that depends
only on temperature and frequency has to be the Planck function 𝐵𝜈(𝑇 ).
Furthermore, the ratio between the specific emission coefficient and the
absorption coefficient is the definition of the source function 𝑆𝜈. There-
fore, for bodies in thermal equilibrium of arbitrary shape and material
we have the Kirchhoff’s law of thermal radiation:

𝑆𝜈 = 𝑗𝜈
𝛼𝜈

= 𝐵𝜈(𝑇 ) (2.20)
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2 Blackbody and Thermal Radiation

This law states that a good absorber is also a good emitter (and vice
versa). It also states that it is impossible for any body in thermal equi-
librium to emit more radiation than a blackbody. Summarizing:

𝐼𝜈 = 𝐵𝜈(𝑇 ) → blackbody radiation (2.21)
𝑆𝜈 = 𝐵𝜈(𝑇 ) → thermal radiation (2.22)

It is important to stress that blackbody radiation is thermal radiation
but vice versa is generally not true: thermal radiation is not necessarily
blackbody radiation. In astrophysical situations the thermal emission
becomes blackbody radiation when the photons are absorbed and emitted
several times before leaving an object in thermal equilibrium. This occurs
when the optical depth of the system is large and the original emission
spectrum of matter in thermal equilibrium is continuous. In that case
one can expect to observe (approximately) blackbody radiation. If the
thermal object is instead optically thin, then the radiation will escape the
system with few or no absorption events occurring and the radiation will
therefore be thermal and follow Kirchhoff’s law, but will not be blackbody
radiation. The same is true if the emitting body is unable to absorb/emit
radiation at certain specific frequencies: the emitted radiation can then
never reach thermal equilibrium and the emitted spectrum will not be
that of a blackbody).

2.7 Principle of Detailed Balance
As we have seen, when a body is in radiative equilibrium with its environ-
ment then the total thermal radiation leaving the object is equal to the
total thermal radiation it absorbs. In other words when two bodies are
at the same temperature, they will stay in mutual thermal equilibrium.
A body at temperature 𝑇 immersed in a bath of radiation emitted by
another body at the same temperature will therefore emit on average as
much light as it absorbs, following radiative equilibrium. This happens
because of the principle of detailed balance, stating that in thermody-
namic equilibrium every elementary process is balanced by its opposite.
In thermodynamic equilibrium the amount of thermal radiation emitted
at every frequency and in all directions by a body at temperature 𝑇 is
equal to the corresponding amount that the body absorbs regardless of
whether the body in question is black or not.
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2.8 Intuition about Kirchhoff’s Law

For example, if the body is a perfect blackbody then the intuition
about this statement is simple, since all radiation hitting the surface of
the body will be absorbed and then re-emitted. The amount of radiation
absorbed and emitted can be calculated with the blackbody curve and
it depends solely on the temperature of the body. When the body is not
a perfect blackbody, for example because the body is small compared
to the certain wavelengths of light, or because its emissivity is smaller
than 1 in certain frequencies, then the principle of detailed balance still
applies and so we can expect that a good absorber is also a good emitter.

2.8 Intuition about Kirchhoff’s Law
To develop an intuition for Kirchhoff’s law, imagine having a body with
a certain temperature 𝑇 in thermal equilibrium. For example, a piece of
plastic material has reached thermal equilibrium with the surrounding
environment. Let’s say that the material has a certain color, for example,
suppose it looks red to your eyes during the day. Where does the color
red come from? This radiation is reflected from the Sun, indeed the
mixture of color frequencies that correspond to the color you see are
the ones that the rock cannot absorb. From Kirchhoff’s law and the
principle of detailed balance, we know that a bad absorber is also a
bad emitter. Suppose now you take an energy spectrum of the piece of
plastic, still in thermal equilibrium, in a dark room so that the sunlight
does not interfere with your measurement. What will you see? You
expect to see thermal radiation emitted by the body at temperature
𝑇 . This radiation will be emitted at all frequencies that the body can
absorb, therefore you expect to see a deep ”absorption“ band around
the frequencies that correspond to the red color since the plastic body
is unable to emit them. At the other frequencies, you will measure a
specific emission coefficient that is given by the Plack function times the
absorption coefficient 𝐵𝜈(𝑇 )𝛼𝑛𝑢. The specific intensity/brightness of the
body is then given by the equation of transport. A confusing aspect of
this is that we said in the previous chapter that when the optical depth
is large, then we have 𝐼𝜈 ≈ 𝑆𝜈 ≈ 𝐵𝜈(𝑇 ). And yet we are now saying that
the specific brightness that we will see is not 𝐵𝜈(𝑇 ). The reason is that
we don’t have to forget that the optical depth 𝜏𝜈 is frequency-dependent.
When the frequency 𝜈 corresponds to the red color in question, then
𝜏𝜈𝑟𝑒𝑑 ≈ 0. So in this case we cannot expect 𝐼𝜈𝑟𝑒𝑑 ≈ 𝑆𝜈𝑟𝑒𝑑 ≈ 𝐵𝜈𝑟𝑒𝑑(𝑇 ).
A related question is then the following: if 𝜏𝜈𝑟𝑒𝑑 ≈ 0 then why light
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2 Blackbody and Thermal Radiation

is not crossing the medium? This happens because reflection occurs at
the microscopic level. Reflection is a phenomenon that occurs at the
atomic level when light waves induce a polarization on the individual
atom of the material (or on the free electrons in a metal) that causes a
dipole emission. This dipole emission is composed of secondary waves
that interact according to the laws of Huygens and Fresnel to give rise
to the known reflection and transmission phenomena. This physics is
not accounted for in the equation of transport –remember we are using
the radiative transfer approximation and not Maxwell equations– and
therefore this conclusion might seem counterintuitive.

It is important to notice that, in our example of red plastic, we have
made the assumption that only the red frequencies are those that cannot
be absorbed/emitted. Therefore the spectrum of the red plastic will look
like a blackbody everywhere except at those frequencies. However, it is
important to stress that real materials have a certain ‘’inefficiency“ in
absorbing/emitting at basically all frequencies. Therefore the spectrum
of a real body will look like an indented curve at basically all frequencies
(like in the Figure 2.1).

Figure 2.1: Specific brightness of a real surface vs. blackbody and graybody
emission. A graybody is an imperfect blackbody, i.e., an object that
can emit/absorb at all frequencies but not with perfect efficiency,
𝛼𝜈 = 𝑘 with 𝑘 ∈ (0, 1).

It is important to notice that, in our example of red plastic, we have
made the assumption that only the red frequencies are those that can-
not be absorbed/emitted. Therefore we have said that the spectrum of
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2.9 Application of Kirchhoff’s Law

the red plastic will look like a blackbody everywhere except at those fre-
quencies. However, it is important to stress that real materials have a
certain ‘’inefficiency“ in absorbing/emitting at basically all frequencies.
Therefore the spectrum of a real body will look like an indented curve
at basically all frequencies (like in the Figure ??).

2.9 Application of Kirchhoff’s Law
Let’s now apply Kirchhoff’s law of thermal equilibrium to the equation
of transport in order to describe three simple physical cases (Figure 2.2).
This application shows how the principle of detailed balance works as we
can see how a good absorber is also a good emitter and vice-versa.

Case 1 First let’s take an optically thick source, for example, a thick hot
gas cloud made of hydrogen plasma and let’s assume that the source
function 𝑆𝜈 is constant. This type of plasma, as we will see, can
emit a continuum spectrum because electrons interact with the
free protons and the acceleration generates photons covering the
whole frequency range. The cloud has to be optically thick so that
radiation can reach thermal equilibrium along with the plasma it-
self. Besides the plasma cloud, we assume there is no other fore-
ground or background object emitting or absorbing light. There-
fore we can set 𝐼𝜈,0 = 0 in the equation of transport. Therefore
𝐼𝜈 = 𝑆𝜈(1 − 𝑒−𝜏𝑛𝑢). Since the plasma is very dense, the optical
depth will be 𝜏𝜈 ≫ 1 and the equation of transport is:

𝐼𝜈 = 𝑆𝜈 = 𝐵𝜈(𝑇 ). (2.23)

This means that you will see a blackbody spectrum (Planck spec-
trum).

Case 2 The same hot thick plasma cloud is now surrounded by a cloud of
cold and thin gas. With “cold’’ we mean that the thermal emission
from this cloud can be considered negligible when compared to the
radiation coming from the hot plasma and therefore 𝑆𝜈 ≈ 0. The
hot plasma acts as a background source of radiation, therefore this
time 𝐼𝜈,0 = 𝐵𝜈(𝑇 ). If the cold gas is composed of some atomic/-
molecular species, encoded by the cloud color green and red, then
it will be optically thin at all frequencies except those that cor-
respond to the atomic/molecular energy transitions where 𝜏𝑔𝑟𝑒𝑒𝑛

13



2 Blackbody and Thermal Radiation

and 𝜏𝑟𝑒𝑑 are both much larger than 1. The equation of transport
is now:

𝐼𝜈 = 𝐵𝜈(𝑇 )𝑒−𝜏𝜈 (2.24)

and therefore the spectrum observed will be a continuum with nar-
row absorption bands corresponding to the color green and red
where the intensity falls exponentially.

Case 3 We now keep the same gas cloud and increase its temperature T,
while at the same time we remove the hot plasma cloud. There is
no background blackbody source now and the equation of transport
is:

𝐼𝜈 = 𝑆𝜈(1 − 𝑒−𝜏𝜈). (2.25)

Here again, 𝜏𝜈 is small everywhere except for the red and green
color frequencies. We thus see the source function only at the
green/red frequencies (since 𝑒−𝜏𝜈 ≈ 0) whereas everywhere else it
will be mostly dark due to the small optical depth (𝑆𝜈(1 − 𝑒−𝜏𝜈) ≈
𝑆𝜈𝜏𝜈 ≈ 0).
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Figure 2.2: The principle of detailed balance. On the left an optically thick hot
source emits a continuum spectrum. In the center, the radiation
crosses a cold thin cloud of gas that absorbs some specific frequen-
cies corresponding to line transitions of the elements composing
the gas. On the right the same gas is heated such that it emits
radiation with no background radiation.
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