
  

Cyclotron & Synchrotron Radiation



  

Synchrotron Radiation is radiation emerging from a charge moving relativistically 
that is accelerated by a magnetic field. 

The relativistic motion induces a change
in the radiation pattern which is very 
collimated (beaming, see Lecture 3). 



  

Cyclotron Radiation: power & radiation pattern

To understand synchrotron radiation let’s first begin with the non-relativistic motion of a 
charge accelerated by a magnetic field. 

That the acceleration is given by an electric field, gravity or a magnetic field does not matter
for the charge, which will radiate according to the Larmor’s formula (see Lecture 3)

Direction of acceleration

Radiation pattern

Remember that the radiation pattern is a 
torus with a sin^2 dependence on the angle
of emission:



  

Cyclotron Radiation: gyroradius

So let’s take a charge, say an electron, and let’s put it in a uniform B field. 
What will happen? 

The acceleration is given by the Lorentz force. 

If the B field is orthogonal to v then: F=qvB

Equating this to the centripetal force gives
the “Larmor radius”: 

F=
mv2

rL
=qvB→rL=

mv
qB

We can also find the cyclotron angular frequency:

F=
mv2

R
=mωL

2 R→ωL=
qB
m



  

Cyclotron Radiation: cyclotron frequency

From the angular frequency we can find the period of rotation of the charge: 

T=
2π
ωL

=
2πm
qB

Note that the period of the particle does not depend on the size of the orbit and is 
constant if B is constant.

The charge that is rotating will emit radiation at a single specific frequency: 

νL=
ωL

2π
=
qB

2πm

Direction of 
acceleration

Radiation 
pattern



  

Cyclotron Radiation: power spectrum

Since the emission appears at a single frequency 

and the dipolar emission pattern is moving along the circle with constant velocity, 
the electric field measured will vary sinusoidally and the power spectrum will show
a single frequency (the Larmor or cyclotron frequency). 

νL=
ωL

2π
=
qB

2πm

Cyclotron frequency

Power Spectrum P(nu)Radiation Pattern Electric Field E(t)



  

Cyclotron Radiation: kinetic energy 

Suppose now you have a charged particle, say a proton, with a kinetic energy of 1 MeV. 
The definition of electronvolt eV is the following:
the amount of energy an charge gains after being accelerated in an electric potential
of  1 Volt ( 1 Volt ~300 statVolt in cgs units).

Both an electron and a proton gain the same energy by definition, but of course
the mass of the proton is ~2,000 times larger than the electron’s, thus its velocity is 
way smaller. (An implication for this is that protons need to be much more energetic than
electrons to become relativistic). 

Ek=
1
2
mv2

=qV →v=√ 2 qV
m

Let’s put this velocity v back into the Larmor radius’ formula: rL=
mv
qB

→rL=√
2mV
qB2

So if I have a 1 MeV proton, and a B field of say, 1 T (1 Tesla = 10^4 G) then my Larmor radius is:
15 cm. 

(q = 1.6e-19 C; m = 1.67e-27 kg; V = 1,000,000 V; B = 1 T)

What will happen if you have a 1 MeV electron in the same field?



  

rL=
mv
qB

→rL=√
2mV
qB2

Ek=
1
2
mv2

=qV →v=√
2 qV
m



  

The “square wave” in the plot in the slide before means that you can apply a varying electric
field so that it changes only sign (that’s the meaning of the square wave). 

How often do you need to change the sign of the electric field to accelerate the proton?

You need to change the field twice every period: T=
2π
ωL

=
2πm
qB

≈67 ns

Therefore you need to put an alternating electric field with a square wave at a frequency of 30 MHz



  

In 1977 German astronomer J. Trumper identified a 
cyclotron emission line in the accreting pulsar Hercules  X-1.

The X-ray spectrum shows an emission line at around 55 keV. 

Trumper proposed that the hot electrons around the neutron 
star magnetic poles are rotating around a strong B field of 
5e12 Gauss, giving rise to an emission line at around 55 keV. 



  

Hercules X-1: Geometry



  

Relativistic Case: From Cyclotron to Synchrotron

We now drop our assumption that v<<c (non relativistic particles) and we describe what 
happens to the radiation of a charge accelerated in a B field when the speeds approach c. 

For this is important that you review Lecture 2-3 on relativistic effects. 
Let’s start by remembering the Lorentz transformations of time:

Δ t=Δ t ' γ

Then remember that the frequency is 1/time, so a frequency transforms as:

ν=ν ' / γ

Therefore what we have called the Larmor frequency and radius become now the 
so-called gyration frequency and gyration radius:

νb=
ωb

2π
=

qB
2πmγ

=
νL
γ

The period of rotation therefore is: T b=
2π
ωb

=
2πmγ

qB

The period now does depend on the particle velocity (Lorentz factor gamma) and as the 
velocity approaches c, the period increases. 

rL=√
(γ+1)mV

qB2 =
γmv
q B



  

The term synchrotron might now become clear: in synchrotron machines, the strength
of the B field is not kept constant, but it is increased with time so that as the Lorentz factor
 gamma increases, the frequency and the radius of gyration are constant. 

Synchrotron facilities are widespread and have very different uses. The most famous one
is perhaps the Large Hadron Collider, which is a synchrotron machine used to generate
relativistic protons up to 7 TeV in energy (per beam). In this case the synchrotron radiation
represents an “annoying” energy loss.

All the magnets on the LHC are electromagnets. The main dipoles generate powerful 8.3 T magnetic 
fields (Earth’s magnetic field is ~0.00005 T). The electromagnets use a current of 11,080 Amp to 
produce the field, and superconductive material allows the high currents to flow without losing any 
energy to electrical resistance.



  

Example: Large Hadron Collider

LHC 8 T magnetic fields require a current of 11,000 Amp!!!
To sustain such huge currents, the resistance of the 
conductors need to be zero → superconductors. 
Comparison: an airplane jet engine requires 1,000 Amp
Your house is not using more than 100 Amp. 

LHC accelerates protons in 5 stages.

Stage 1: Linear Accelerator 
Energy: 50 MeV
Speed: 1/3 c

Stage 2: Proton Synchrotron Booster
Circumference: 160 m 
Energy: 1.4 GeV (mc^2> p rest mass)
Speed: 0.92 c

Stage 3: Proton-Synchrotron 
Circumference: 620 m
Energy: 25 GeV
Speed: 0.99935 c

Stage 4: Superproton Synchrotron
Circumference: 7 km
Energy: 450 GeV
Speed: 0.999993 c

Stage 5: LHC
Circumference: 27 km
Energy: 7 TeV
Speed: 0.99999999 c




  

Synchrotron Radiation in Astrophysics

Magnetic fields and relativistic particles are plentiful in astropysics. Synchrotron emission
is seen in a wide variety of environments. 

Note: From here onward I switch back to cgs units



  

Take a relativistic electron moving around a B field. To understand how the radiation pattern 
changes from cyclotron to synchrotron we can do the following: 
- we start with the radiation pattern in the electron rest frame (where we know the radiation pattern)
- then we do a Lorentz transformation from the rest frame to the lab frame. 

Synchrotron Radiation: Emission Pattern



  

Take a relativistic electron moving around a B field. To understand how the radiation pattern 
changes from cyclotron to synchrotron we can do the following: 
- we start with the radiation pattern in the electron rest frame (where we know the radiation pattern)
- then we do a Lorentz transformation from the rest frame to the lab frame. 

Synchrotron Radiation: Emission Pattern

Note: you might argue that the 
electron in the rest frame is not 

really at rest since it is accelerating. 

This is true, but at least for 
infinitesimal neighboring times the
particle will be non-relativistic and

you can use Larmor’s formula. 



  

Synchrotron Radiation: Emission Pattern

To transform the radiation pattern what we really need is to transform the emission angle
theta and see how it changes under Lorentz transformations. 

But we have already seen this in Lecture 2: aberration of light



  

Synchrotron Radiation: Power

In the case of cyclotron, as well as (non-rel) Bremsstrahlung we saw that we can use
the Larmor’s formula (Lecture 4) to calculate the power emitted by an accelerated charge: 

First, let’s take the usual rest frame K’ with velocity v and the lab frame K. 

Power is energy over time. Let’s Lorentz transform energy and time. 

Energy: 

Time:  

Therefore:

So the total power emitted will be a Lorentz invariant (but this does not mean that the
angular dependence of radiation will be the same of course). 



  

Synchrotron Radiation: Lorentz Transformation of Accelerations

The Larmor’s formula in a non-relativistic reference frame is: P=
2q2a2

3 c3

It is now convenient to split the acceleration in its parallel and perpendicular components
to the direction of the rest frame v.

In Lecture 3 we saw how velocities transform. Now we see how accelerations transform. 

As usual start with the Lorentz transformations of coordinates and velocities (Lecture 3):

where here we have defined for convenience: 



  

Therefore: 

And a similar result holds for the z-component. 

Now, if the particle is at rest instantaneously in K’, then the velocity 

Also, sigma = 1 in this case. 

Therefore, take the velocity v along the x-axis and from the equations above:



  

So take now a helical path of a particle in a
uniform B field. Let’s decompose the velocity and
accelerations into their parallel and perpendicular
components and write the total emitted power:

Now from this formula one might suppose that the parallel component is more important
than the perpendicular one. This is true when the two accelerations are comparable. 
But think for a moment about what happens in a ultra-relativistic beam of particles. 
If v~c, you cannot really accelerate the particle in the direction of v (the parallel component)
whereas with a modest B field you can strongly bend the direction of motion and have a 
large perpendicular acceleration. So for ultra-relativistic particles the parallel component
gives almost zero contribution!!!



  

Synchrotron Radiation: Power and Pitch Angle

Since we know the angular frequency of radiation (gyrofrequency): 

Substituting this back in the emitted power equation we get:

However, if we have many particles, 
each of them will have a different pitch angle alpha.
So the perpendicular velocity needs to be averaged over
all pitch angles. If we do that, we can write the formula:

and rewrite it as:

Where                       is the Thomson cross section
and                       is the magnetic energy density.

α

α



  

Example: Suppose the protons of the LHC are accelerated up to an energy of 7 TeV and
then they are left to cool down due to synchrotron emission. On which timescale do they
cool down? 

IMPORTANT: The formula written before is valid only for electrons emitting synchrotron 
radiation. The reason why we write this formula only for electrons is because in basically
all astrophysical cases you have electron synchrotron. This is because electrons become
relativistic much more quickly than protons as they are easier to accelerate. 
However using the preceding expression (with the red contour in the previous slide) is 
fine for any particle of mass m and charge q. 

Proton energy: 7 TeV → velocity v~ 29979245800*0.99999999 cm/s
B = 80,000 G
q = 4.8e-10 statC
gamma ~ 7,000
m = 1.67e-24 g

Timescale = (Proton energy) / (synchrotron power) = 10 erg/ 4.9e-5 erg/s = 2.5 days

Now let’s do the same calculations for a 7 TeV electron (gamma ~ 13,000,000):

Timescale = (Electron energy) / (synchrotron power) = 10 erg/ 4.9e-5 erg/s = 9 ns

Electrons would cool down a factor 10^13 faster than protons!! → LHC INFEASIBLE at 7 TeV



  

Synchrotron in Astrophysics

Astrophysical jets are most likely generated by relativistic particles being launched close
to a black hole (or even a neutron star when in a binary). Such particles are thought to be
electron/positron pairs which then spiral along B field lines and generate synchrotron 
radiation. However, we also know that cosmic rays most likely come from Active Galactic
Nucei, where strong B fields around supermassive black holes launch streams of 
ultra-relativistic particles which include protons. So it’s still unclear whether jet emission
is due to leptons or hadrons. 



  

Synchrotron Radiation: 
Jupiter’s Belt



  

Synchrotron Radiation: Single Particle Spectrum

It’s important now to make a distinction between the emitted radiation and the received
radiation. Indeed the received radiation will be such that the observer can see it only
when the narrow beam points towards the observer. 

This will be a fraction much smaller than the gyration period! The electro(magnetic) field
received by the observer will thus be pulsed and therefore it must be composed by 
many frequencies (think about the Fourier power spectrum of a narrow pulse…).
How small is this period of time?  First of all, suppose that we have one electron and 
the pitch angle is 90 degrees. 

The electron will radiate towards the 
observer only for a brief amount of time: 

Δ t e≈
AB
v

=
2rL
γ v

=
1

π γνB

Now a question: here we are 
seeing photons. The expression 
above is the emission time. What
happens when we measure time
intervals with photons? Do we 

have the same result as when we
measure time intervals with clocks?

(Lecture 5)



  

In Lecture 3 we saw that: 

Δ t A=Δ t e(1−βcosθ)

Here therefore it must be the same with 
the difference that theta here is ~0 because
we are emitting photons in the same direction of 
motion:

Δ t A≈Δ te (1−β)

We can write:

The inverse of this is an angular frequency. We can thus build a characteristic synchrotron 
frequency in this way: 

Synchrotron Radiation: Single Particle Spectrum



  

First thing to note: this frequency is gamma^3 larger than the gyration frequency. 
This makes sense since we see the emission only for a tiny fraction of the orbit, whereas
the gyrofrequency reflects the whole circular motion of the electron. 

Second: the observed electric field of the rotating charge will be narrow and thus the 
radiation will spread across many frequencies. The characteristic frequency where the
power will drop is of the order of the synchrotron frequency above.

The width of the electric 
field is ~ Δ t A=Δ te (1−β)

Synchrotron Radiation: Single Particle Spectrum



  

Cyclotron radiation

The charge is moving in a 
circle, so the electric field 
variation is sinusoidal

Cyclotron-synchrotron 
radiation

The charge is moving in a 
circle, but some aberration of 
light starts to become visible

Synchrotron radiation

The charge is moving in a 
circle, aberration of light is 
extreme and radiation is seen 
only for a tiny amount of time 
when the cone 1/gamma points 
towards the observer  



  

Synchrotron Radiation: Single Particle Spectrum

The fact that the single particle spectrum is not a single frequency can be easily 
understood by using Fourier transforms. This is related to the so-called
time-energy uncertainty relation. 

Another way is to think about this is a wave packet localized in time. 



  

Waves and Fourier Transforms 
(Section 2.8 R&L)

Δ t Δ ω>1

The spectrum of radiation depends on the time variation of the 
electromagnetic field. 
If you observe the variation of, say, the electric field E(t) for a time Dt 
then you can define the spectrum with a frequency resolution 
Domega = 1/Dt. 

Fourier Transform

Inverse Fourier Transform



  

Relation between Power and 
Fourier Transforms

Suppose you have a sinusoidal electro-magnetic field.
We know that the average magnetic and electric fields are B = E/c  
Therefore the Poynting vector is: 

The total energy per unit area in 
the pulse is:



  

Relation between Power and 
Fourier Transforms

Suppose you have a sinusoidal electro-magnetic field.
We know that the average magnetic and electric fields are B = E/c  
Therefore the Poynting vector is: 

The total energy per unit area in 
the pulse is:



  

Fourier Transforms

Now we take the Fourier Transform: 



  

Fourier Transforms



  

Synchrotron Radiation: Single Particle Spectrum

In summary: We haven’t derived in a rigorous way the single particle spectrum yet, 
but we can expect the following. 

1. The power spectrum will show a broad range of frequencies
2. The width of the power in the power spectrum will be of the order of 

3. We can expect a quick (exponential) cutoff above these frequencies. 
4. The peak of the power must be somewhere around       too, since most of the
    power is emitted in the interval 
5. We expect much more than half of the power to be emitted within 1/gamma. 

νs=
1

Δ t A

νs
Δ t A

For point 5. please check Lecture 3 where we showed that I=δ
4 I '



  

First thing to note: this frequency is gamma^3 larger than the gyration frequency. 
This makes sense since we see the emission only for a tiny fraction of the orbit, whereas
the gyrofrequency reflects the whole circular motion of the electron. 

Second: the observed electric field of the rotating charge will be narrow and thus the 
radiation will spread across many frequencies. The characteristic frequency where the
power will drop is of the order of the synchrotron frequency above.

The width of the electric 
field is ~ Δ t A=Δ te (1−β)

Synchrotron Radiation: Single Particle Spectrum



  

P=
4
3
σT cβ

2
γ
2U B

ωc=
3
2

γ
3
ωb sinα Synchrotron critical frequency (definition)

ωb=
qB
mc γ

ωc=
3
2

γ
3
ωb sinα

νc=
3
2

νs sinα



  

Synchrotron Cooling Time

Once we have the total emitted power we can easily calculate the cooling time of an ensemble
of electrons emitting synchrotron. 

P

As an example, take a supermassive black hole in an Active Galactic Nucleus. 
The magnetic field around the black hole is typically of the order of 1,000 G
The Lorentz factor is also of the order of 1,000, so the electrons cool down on a timescale
of just 0.77 seconds. 

If instead you calculate the same cooling time very far away from the black hole, where
gamma is still 1,000 but the B filed is much smaller (e.g., B~1e-5 G), the cooling time 
is then of the order of 250 Myr. 



  

Synchrotron Cooling Time

The galaxy in the center is Cygnus A, 
at a distance of 260 Mpc. This image
is taken in optical where the source
is not particularly remarkable. 

It is a very famous source especially
for its low-energy emission. 



  

Synchrotron Cooling Time

The red light is radio emission from
synchrotron radiation in the so-called
radio lobes. 

These are the end regions of 
powerful jets generated in the 
center of the galaxy around a
supermassive black hole of mass
of the order of 1,000,000,000 Msun. 



  

Synchrotron Single Particle Spectrum

For reasons of time we do not derive the expression of the power emitted by a single particle. 

First let’s define the quantity                . Then the function F(x) is:x= ω
ωc

This function F(x) contains the frequency dependence of the synchrotron power of the 
single particle.  K5/3(ξ) is the Bessel function of oder 5/3.

The function F(x) admits two asymptotic limits, one at low frequencies x<<1 and one
at high frequencies x>>1. 



  

Asymptotic limits



  

Why this synchrotron emission (SINGLE 
electron) is not a single frequency? 

Critical Frequency 

Peak Frequency



  

Fourier Transforms



  

The spectrum of a single particle has its broad 
shape for two reasons: 

1. The electro-magnetic field is not sinusoidal
2. The duration of the “pulse” is finite in time

This is a general property of any signal. 



  

1. The single-particle spectrum 
extends up to something of the 
order of the critical frequency 
before decreasing 
exponentially. 

2. The peak of the single-
particle spectrum occurs at 0.29 
x critical frequency

3. The width of the peak is of the 
order of the critical frequency

4. The meaning of the low 
frequency power-law index “1/3” 
is not immediately obvious and 
we will skip its detailed 
derivation here (see Section 6.4 
on R&L). 



  

N (E )dE=C E− p dE

We know how the spectrum of one particle emitting 
synchrotron will look like. 
What if we have an ensemble of particles (with 
energies E between E1 and E2)?

N (γ)d γ=C γ
− p d γ

(C is a constant that 
depends on the pitch angle)

We choose a power-law distribution because this is a very common case 
in many different physical, biological and other natural (and man-made) 
phenomena. 



  



  

x (Convolution )



  

P tot(ω)=C∫
γ1

γ2
P (ω)γ

− pd ω

The total power emitted at a specific frequency by our ensemble of 
(power-law distributed) particles is:

x= ω
ωc

We substitute the frequency omega with the variable x:

Remember also that the critical frequency is proportional to gamma^2

P tot(ω)∝ω
−( p−1)/2∫x1

x2
F ( x) x( p−3)/2dx



  

It's important to note that the function F(x) contains the dependence 
of the magnetic field (since the critical frequency depends on the 
magnetic field)

Therefore we expect that the total power emitted depends on the 
frequency but also on the magnetic field. 

After some algebra (read section 6.4 if interested) one finds: 

P tot(ω)∝ω
−s Bs+1

where we have defined the spectral index s = (p-1)/2



  

Synchrotron: 
A power law electron 

energy distribution produces 
a power law spectrum

P tot(ω)=C∫
γ1

γ2
P (ω)γ

− pd ω

P tot(ω)∝ω
−s Bs+1

P
ow

er

P tot(ω)∝ω
−s Bs+1



  

Self-Absorption
If you noticed, we superimposed different single particle spectra and we 
said that the initial power-law distribution of electrons (spectral index “p”) 
gives a power law distribution of emitted radiation (spectral index “s”). 

However, according to the principle of detailed balance (see Lecture 1 
and 2), to every emission process there is a corresponding absorption 
process – in the case of synchrotron radiation, this is known as 
synchrotron self-absorption.

Therefore this power-law with spectral 
index “s” cannot be the whole story...

When does (self)-absorption
 occur?

When does (self)-absorption
 occur?ν

−s



  

Synchrotron Self-Absorption
After some algebra, that we will skip here, one finds: 

We can write the source function as usual: 

Sν=
jν
αν

=
P (ν)

4 παν

∝ν
5 /2

Why in this case the slope of the self-absorbed part is 5/2, whereas for thermal 
bremsstrahlung it was 2?



  

Synchrotron Self-Absorption
After some algebra, that we will skip here, one finds: 

We can write the source function as usual: 

Sν=
jν
αν

=
P (ν)

4 παν

∝ν
5 /2

Note that the slope is NOT 2 as in the Rayleigh-Jeans regime, but it’s 5/2. 
The reason is simple: here we do not have (and cannot have) a thermal distribution of 
particles since the B field prevents this to happen. 



  

K B1+s
ν

−s



  

With the observation of the self-absorbed part
you can determine B

Observations of the 
thin part can be used to 
determine K and s

K B1+s
ν

−s



  

With the observation of the self-absorbed part
you can determine B

Observations of the 
thin part can be used to 
determine s

Self absorption frequency: marks the 
transition from optically thin to thick

K B1+s
ν

−s



  

Self absorption frequency: marks the 
transition from optically thin to thick

THICK THIN

K B1+s
ν

−s



  

Blackbody
Thermal Bremsstrahlung

Synchrotron



  

Blackbody
Thermal Bremsstrahlung

Synchrotron

ν
2

ν
3e−h ν/kT

ν
2 e−h ν/kT

ν
0

ν
−s

ν
5/2 What happens here?



  The Crab Nebula (M1)



  

In the Crab nebula, spiraling electrons emitting optical photons have a lifetime of only 
100 yr, and those emitting X-rays live only a few years. Such electrons could not ∼

have been accelerated in the 1054 CE supernova collapse that spawned the Crab 
nebula. Their energy source was a puzzle until the discovery of the Crab pulsar in 
1968.



  



  

Chandra X-Ray Observatory
(0.3-8 keV)

Hubble Space Telescope
(Optical)





  



  

Very easily visible from 
the Netherlands!!

(Today after ~11 pm)

Mag. ~ 7.5

20-cm telescope

Where is the “visible” here?



  

Very easily visible 
Mag. ~ 7.5

You can “see” some synchrotron here!

20-cm telescope



  



  

Thermal Blackbody Bremsstrahlung Synchrotron Inverse 
Compton

Optically thick – YES NO  – 

Maxwellian 
distribution
of velocities

YES YES –   NO

Relativistic 
speeds

– – – YES

Main Properties Matter in 
thermal 
equilibrium

Matter AND 
radiation in 
thermal 
equilibrium

Radiation emitted by 
accelerating particles

Radiation emitted 
by accelerated 
particles in B field.

Summary of Radiation Properties

Rules of thumb: 
1. Blackbody is always thermal, but thermal radiation is not always 
blackbody (e.g., thermal Bremsstrahlung)
2. Bremsstrahlung can be thermal or non-thermal. 
3. Bremsstrahlung becomes blackbody when optical depth >>1.
4. Synchrotron emission exists only for non-thermal distribution of 
particles
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