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Clarification on Kirchhoff’s Law

jν=ανBν(T )

A good absorber is a good emitter
A good emitter is a good absorber

It was proved for objects in fully thermodynamic equilibrium but it is applicable to 
any object in thermal equilibrium. 
It is NOT applicable for non-thermal emitters (e.g., synchrotron, shocks, nuclear explosions)



  

Special Relativity

Special Relativity is a theory describing the motion of particles 
and fields at any speed. It is based on two principles:

1. All inertial frames are equivalent for all experiments i.e. 
no experiment can measure absolute velocity.

2. Maxwell's equations and the speed of light must be the 
same for all observers.



  

Special Relativity

General Relativity

Galilean Relativity

Applies to all inertial and non-inertial
frames. 

Applies to all inertial and non-inertial
frames. 

Applies to all inertial and non-inertial
frames + gravitational fields. 

Applies to all inertial and non-inertial
frames + gravitational fields. 

Applies to all inertial and non-inertial
frames at low speeds. 

Applies to all inertial and non-inertial
frames at low speeds. 

The laws of motion are the 
same in all inertial frames.

The laws of motion are the 
same in all inertial frames.



  

Lorentz Transformations

Lorentz Transformations: Both space and time 
are subject to transformation. The description of events 

occurring at a certain location in space and time depends 
on the particular reference frame of choice. 

Lorentz Transformations: Both space and time 
are subject to transformation. The description of events 

occurring at a certain location in space and time depends 
on the particular reference frame of choice. 



  

Light Cones



  

Relativity of Simultaneity



  

The Andromeda Paradox

Formulated first by R. Penrose to illustrate the apparent paradox 
of relativity of simultaneity



  

Ruler:Measuring a bar

Note: the two observers in K and K' would 
measure the same effect with respect to each 
other. How is that possible? 

Solution: Lorentz transformation of time is NOT 
Lorentz invariant since it depends also on space. 
Therefore temporal simultaneity is NOT Lorentz 
invariant. Therefore each observer does not see 
the other carrying the measurement of the two 
ends of the stick at the same time. 

L=L' √1− v
2

c2
=
L'
Γ

L’ = length of object in K’
L = length of object in K

Lorentz-Fitzgerald Contraction



  

Clocks: Time Intervals

Time in the lab frame flows faster than in the moving frame. 

Same story here: both observers will see the each other's clock slowing down. 
Each would object that the clocks used by the other to measure the time interval were 
not synchronized. 

Δ t=
Δ t '

√1− v
2

c2

=Δ t 'Γ

Time dilation effect



  

Observability of Lorentz contraction
and Time dilation

Question for you: Lorentz contraction and time dilation assume 
that you are carrying your measurements with rods and clocks, 

i.e., you can carry the measurement “in place”. 

But what happens when you use photons? 
This is the situation we encounter in astronomy, basically all 

information is  carried by photons and we make measurements 
by collecting photons on a detector (either by taking a picture 

or by recording the photons’ time of arrivals). 



  

Observability of Lorentz contraction
and Time dilation

Question for you: Lorentz contraction and time dilation assume 
that you are carrying your measurements with rods and clocks, 

i.e., you can carry the measurement “in place”. 

But what happens when you use photons? 
This is the situation we encounter in astronomy, basically all 

information is  carried by photons and we make measurements 
by collecting photons on a detector (either by taking a picture 

or by recording the photons’ time of arrivals). 

We will see now that the fact that we use photons instead of rulers and clocks “in place” 
changes completely the effect observed. This doesn’t mean of course that the Lorentz
contraction and/or time dilation do not occur. It means simply that the finite propagation
speed of light introduces distortions in the effect measured when using photons. 



  



  

Diameter: 200.000 light years



  

Diameter: 200.000 light years

This picture does not represent an “instant” of the 
Andromeda Galaxy. Indeed the photons you're 
recording were emitted with up to 200,000 years difference. 

What you're seeing 
are photons arriving 
at the same time, but 
NOT emitted at the 
same time.



  

J. Terrell: “Invisibility of the Lorentz Contraction”

R. Penrose: “The Apparent Shape of a 
 Relativistically Moving Sphere”

These papers were published in 1959. 
The effects of the finite speed of light seem
maybe obvious to you, but that’s how long
it took to realize this (special relativity was
first published in 1905…). 

Actually A. Lampa (Austrian) realized this 
earlier, in 1924. But for some reasons his 
work was mostly ignored. 
A. Lampa: “"Wie erscheint nach der 
Relativitätstheorie ein bewegter Stab einem 
ruhenden Beobachter?”



  

A1B1=L

If you use a “ruler” you will see L=
L'
Γ

However, if you take a picture (i.e., you use
photons) you will see something very different.

Call H the point reached by the photon emitted 
in A1 after a time      , such that the extreme B1 
of the rod will be at B2 (i.e., H and B2 have the
same distance to the observer). 

A photon emitted in H and B2 will thus reach
the observer simultaneously (i.e., create the 
“picture” on the camera). The length A1B1 is
thus measured as HB2. Is HB2 =          ?

No!

L' /Γ

Photons: Measuring a bar

Δ t



  

Photons: Measuring a bar

A1H=A1B2cosθ=
L' cosθ

cΓ(1−βcosθ)

A1B1=L

B1B2=βc Δ t

A1H=cΔ t

With a bit of algebra one can find:

Then: 

A1B2=
A1H

cosθ
=

L'
Γ(1−βcosθ)

=δ L'

Λ=H B2=A1B2 sinθ=L' δ sinθ

Note the difference between the ruler 
and photon case



  

Here the square represents an object of finite size and 
extension. In other words any real object we can observe. 
The net effect is a rotation of the object. Not a contraction



  

Photons: Time Intervals
We show now that the time dilation effect 
is completely reversed when you do your 
measurements with  photons instead of 
using “in place” clocks. 
From what we said before we expect 
a time dilation.

We will show now that, when using
photons,  we find a time contraction: 

Δ ta=
Δ t e '
δ

is not measurable (with photons) but
we measure        . Again, this is just an 
effect due to the use of photons and the 
fact that they propagate with a finite speed. 

Here the subscript “a” and “e” refer
to the “arrival” and emission time. 
Note that:

Δ t e=Δ t e 'Γ

Δ ta



  

Photons: Time Intervals

A is the point where a lamp 
emits its first photon. The
last photon is emitted in B

Lamp turns off



  

Photons: Time Intervals

A is the point where a lamp 
emits its first photon. The
last photon is emitted in B

D is the point where the photon emitted in A is located, 
when the last photon is emitted in B

Lamp turns off



  

Photons: Time Intervals

CD is the separation along the line of sight 
between the photons emitted in A and B



  

Photons: Time Intervals
An observer will thus measure the interval CD/c, 
where c is the speed of light. 

Δ t a=
CD
c

=
AD−AC
c

=Δ t e−βΔ t e cosθ=Δ t e(1−βcosθ)

Δ t e (1−βcosθ)=ΓΔ t ' e (1−βcosθ)=
Δ t ' e
δ

δ=
1

Γ(1−βcosθ)

Remember what delta is: 



  



  

Measured with “photons”Measured with a “ruler”



  

Astrophysical Jets



  

M87

SMBH ~ 6x10^9 Msun



  

A practical application: Superluminal Motion
Special Relativity states that the speed of light cannot be crossed. 
So how do you explain the following image? 



  

To answer this question look at the exercise 4.7 of the R&L 

Δ t a=Δ te
'
γ(1−βcosθ)=Δ t e(1−βcosθ)

Time to move from A to B 
(in reference frame K)

Observer

B is closer to observer than A, therefore:

The displacement  C → B is 

Therefore the apparent velocity must be:

3

v sinθΔ t e

vapp=
v sin θΔ t e

Δ t a
=

v sinθ

1−βcosθ

Δ te



  

To answer this question look at the exercise 4.7 of the R&L 

3

vapp=
v sinθΔ t e

Δ t a
=

v sinθ

1−βcosθ

How can we now find the maximum of this
apparent velocity?

Observer



  

To answer this question look at the exercise 4.7 of the R&L 

vapp=
v sinθΔ t e

Δ t a
=

v sinθ

1−βcosθ

How can we now find the maximum of this
apparent velocity?

Differentiate (wrt the angle theta) and set 
the expression to zero:

vapp
max

=
v √1−β

2

1−β
2 =γ v

So if the velocity v is large and gamma is 
>>1 you can easily go to apparent velocities 

>> c

3

Observer



  

Apparent superluminal motion
is a very well known and widespread 
phenomenon in astronomy!

Again, this is an effect due to the way in 
which we perform the measurement: we
use photons which have a finite propagation
speed. Nothing is really moving at v>c. 



  

Apparent superluminal motion
is a very well known and widespread 
phenomenon in astronomy!

Example: suppose v~0.99c, which is 
relativistic, but still relatively far from c. 

Then            and you get a “superluminal”
motion for basically almost any viewing
angle from zero to 60 degrees. 
(angle zero → object moves directly towards you)
(angle 90 deg → object moves orthogonal to you)

Γ≈7



  



  

Relativistic Doppler Boost

Let's start from this expression we derived before: 

Δ ta=Γ(1−βcosθ)Δ t ' e

We know that frequency is the inverse of time so we can write:

ν= ν
'

Γ(1−βcosθ)
=ν

'
δ

This is the relativistic Doppler effect, based on the time
dilation AND the finite time for light propagation. 



  

Aberration of Light



  

Lorentz Transformations of Velocities

There are the velocity 
transformations when the 
velocity is on the x-axis 

direction. What about a more 
general form? 

Call v the velocity of a reference frame K’ in K (as usual). 
Call u’ the velocity of an object in K’. What is u in K?
First let’s check the easy case: v is along the x-axis.



  

Take v along an arbitrary direction. Take the parallel and perpendicular 
components of u to v.

Aberration formula

Aberration of light (u = c)



  

Lorentz Transformations of Velocities: Beaming Effect

Start from the aberration of light formula: 

Let’s now ask the question of what happens when                  i.e. the photon is emitted at 
right angles  to v in K’. 

θ '=π/2

tanθ=
c
γ v

sinθ=
1
γ

If we are in the highly relativistic regime, v~c (gamma>>1) then theta must be small and so:

θ≈
1
γ

Terefore if photons are emitted isotropically in K’ then in K you will see half of them within an 
angle 1/gamma



  



  



  

It is instructive to consider a blob of plasma 
ejected from around a black hole (both  
supermassive or stellar). In Active Galactic 
Nuclei, were a supermassive BH is present, the 
blob is surrounded by clouds of gas emitting 
radiation (so-called broad line regions). In stellar 
mass BHs instead, there is a large cloud of hot 
electrons that produce high energy radiation via 
inverse Compton scattering. 

Active Galactic Nucleus

X-Ray Binary (Accreting Black Hole)



  

Radius R

ASSUMPTIONS

1. Jet is moving with bulk Lorentz 
factor Gamma

2. Broad Line Region’s photons are 
produced in a sphere of radius R

3. The radiation is monochromatic 



  

Radius R

Blueshifted 

by a factor 
90 deg. 

Γ



  

Radius R

Blueshifted 

by a factor 
90 deg. 

1/Gamma ΓIntensity boost: 

I '=δ ' 4 I



  

Radius R

Blueshifted 

by a factor 
90 deg. 

1/Gamma ΓIntensity boost: 

I '=δ ' 4 I
Monochromatic flux 
spreads across frequencies
(due to the cos(theta) factor below). 

ν= ν
'

Γ(1−βcosθ)
=ν

'
δ



  

Radius R

Blueshifted 

by a factor 
90 deg. 

1/Gamma ΓIntensity boost: 

I '=δ ' 4 I
Monochromatic flux 
spreads across frequencies
(due to the cos(theta) factor below). 

ν= ν
'

Γ(1−βcosθ)
=ν

'
δ



  

Lorentz Transformations of Solid Angles

d ϕ=dϕ 'dΩ '=dcosθ ' d ϕ '

dΩ=dΩ ' δ2



  

Photons: Intensity, opacity and 
emissivity Transformation

I ν

ν
3=Lorentz Invariant

S ν

ν
3 =Lorentz Invariant



  

Intensity, opacity and emissivity 
Transformation

τ=
lαν

sin θ
=Lorentz Invariant

Since exp(-tau) gives the fraction of photons passing through the material, the optical 
depth must be a Lorentz Invariant (i.e., simple counting does not change the outcome
in any reference frame). 

j ν
ν

2 =Lorentz Invariant

Similar arguments can be used to show that also the emissivity divided by the 
frequency squared is a Lorentz Invariant: 

Suppose you have a moving absorbing medium with velocity v in K. The medium has a 
certain optical depth. Theta is the angle that the photons (crossing the medium) make with the 
velocity of the medium. How does the optical depth transform? 



  



  

The “engine” of these galaxies
are supermassive black holes
of ~4,000,000,000 Msun, i.e.

About 1000x the one in the Milky Way 
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