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Thermal Radiation Properties (so far)



  

Wise (IR)



  

An Example in Everyday Life

X-Rays used in medicine (radiographics) 
are generated via Bremsstrahlung process. 



  

Bremsstrahlung radiation is emitted when a 
charged particle is deflected (decelerated) 
by another charge. 

If plasma produces radiation in this way and
the radiation can escape the environment 
without further interaction (i.e., the plasma is 
optically thin)  then you will see Bremsstrahlung
radiation. 

This type of radiation is seen very often in 
astrophysical phenomena: 

- Intracluster medium  (X-rays)
- solar flares (X-rays)
- isolated neutron stars (X-rays)
- neutron star binaries (X-rays)
- black hole binaries (X-rays)
- supermassive black holes (X-rays)
- HII regions in the Milky Way (radio)
- Astrophysical Jets (radio)

In a nutshell:



  

Bremsstrahlung 
(or free-free emission)
(or braking radiation)



  

Bremsstrahlung Radiation

Bremsstrahlung seems a simple process, but in reality is complicated because the 
energy of the radiation emitted might be comparable to that of the electron producing it. 

This means we need a quantum treatment. 
Particles can also move relativistically, so 
we might need a relativistic treatment. 

However, a classical treatment works well
in most cases and the quantum corrections can 
be introduced as corrections (Gaunt factor)

Finally, the relativistic treatment will be seen later 
as a special case. 



  

Accelerations: Retarded Potentials

We know from Maxwell equations that the field E(r,t) and B(r,t) can be expressed in terms
of two potentials,              and A(r, t).ϕ(r , t )

B=∇∧A E=−∇ ϕ−
1
c

∂ A
∂ t

We also know that the two potentials satisfy the equations: 

And we know that the solution for these two equations is:

Here r is the point at which the fields are measured. The integration is over the electric 
current and charge distributions throughout space
The terms |r-r’|/c  take account of the fact that the current and charge distributions 
should be evaluated at retarded times.



  

Retarded Time

The retarded time refers to the conditions at the point r’ that existed at a time earlier than t by
just the time required for light to travel between r and r’. 

In other words: the field at a certain point in space is not determined by where the charge is
NOW (time t) but it depends on the state of the charge in the past. How far in the past? 
Just the time it takes to the fields to propagate from the charge to the point we’re measuring. 

First of all let’s clarify what r and r’ are. 
In electrodynamics one frequently encounters problems involving two points, typically,
a source point, r', where an electric charge is located, and a field point, r, at which you
are calculating the electric or magnetic field.

This is the origin of our Cartesian 
reference frame.
We are measuring the field at the 
distance r from the origin of our 
frame. And we are measuring this 
field that is generated by the charge 
at the point r’.  

(If the Sun turns off, you will realize it 8 minutes later).  

|r−r '|



  

Accelerations: Retarded Potentials

Electric and magnetic fields move at the speed of light, which is finite. 

If you take a charge  and move it, the field lines will change. The disturbance will take
time to propagate. It is this “retardation” that makes possible for a charge to radiate!

See animation!



  

Velocity and Acceleration Fields

If one calculates the E and B fields from the retarded potentials one finds the following:

Here u is the velocity of the charge, n is a unit vector from the charge to the field point. 

We have aso used the notation R = |r-r’|   (so that n = R/R)



  

Velocity and Acceleration Fields

If one calculates the E and B fields from the retarded potentials one finds the following:

Here u is the velocity of the charge, n is a unit vector from the charge to the field point. 

We have aso used the notation R = |r-r’|   (so that n = R/R)

This field falls off as 1/R^2, it is called
the velocity field and it is a generalization
of the Coulomb law for moving particles. 
For u<<c then it becomes precisely 
Coulomb’s law. Note that there is no 
acceleration in this term, i.e., this field is
generated by charges at rest or with constant
velocity. 



  

Velocity and Acceleration Fields

If one calculates the E and B fields from the retarded potentials one finds the following:

Here u is the velocity of the charge, n is a unit vector from the charge to the field point. 

We have aso used the notation R = |r-r’|   (so that n = R/R)

This field falls off as 1/R^2, it is called
the velocity field and it is a generalization
of the Coulomb law for moving particles. 
For u<<c then it becomes precisely 
Coulomb’s law. Note that there is no 
acceleration in this term, i.e., this field is
generated by charges at rest of with constant
velocity. 

When u~c then the term k becomes very important and concentrates the fields
in a narrow cone (beaming effect, see previous lecture). 



  

Velocity and Acceleration Fields

If one calculates the E and B fields from the retarded potentials one finds the following:

Here u is the velocity of the charge, n is a unit vector from the charge to the field point. 

We have aso used the notation R = |r-r’|   (so that n = R/R)

This is the acceleration field, i.e., it appears 
when the charges are accelerated. 
Note that it falls off as 1/R, not as 1/R^2. 
The acceleration field is also known as 
the radiation field and it is orthogonal to n.



  

Larmor’s Formula

What can we say about the radiation field when the velocity is <<c? (non-relativistic case)

In this case beta<<1 and thus we can simplify the electric and magnetic field expressions
and obtain:

What is the Poynting vector S? (remember 
that the Poyinting vector defines the direction
towards which the energy carried by the em 
fields is directed. Here S is parallel to n; 
S has units of erg/s/cm^2, i.e., energy flux). 

Since: 

The Poynting vector has magnitude:



  

Larmor’s Formula

Note the angle theta!

The energy of the em. field is not isotropic but
there is a sin^2 !!



  

Larmor’s Formula

Now let’s calculate the power in a unit solid angle about n. To do this we multiply the 
Poynting vector (units: erg/s/cm^2) by an area dA (cm^2) to get a power (erg/s). 
How do we choose dA? We know that the solid angle dOmega = dA/R^2. Therefore: 

And now we integrate the above expression over the whole solid angle Omega=4*pi
and we obtain the total power emitted by an accelerated charge in the non-relativistic
approximation:

Larmor’s Formula

IMPORTANT: The power emitted is proportional to the square of the charge and the
square of the acceleration.



  

The animation represents a charged particle being 
switched up and down in a very strong electric field, 
such that the shape is traced out in time and aligns to an 
approximate square wave. The ovals’ reference lines are 
drawn to the left and right of the charge and correspond 
to a cross-section through the doughnut toroid, as 
illustrated in the previous diagram. Based on the criteria 
of the Larmor formula, when a charge is subject to 
acceleration, i.e. during the transition positions, it 
radiates power also subject to the angle θ with respect to 
the axis of charge motion. As such, the energy density is 
reflected by the depth of the yellow shading, symmetrical 
about the axis of motion. However, the intention of the 
left-right sides of the animation is to be somewhat 
illustrative of wave-particle duality in that the left reflects 
the electric field lines, while the right reflects the streams 
of photons being emitted by the charge. The field lines or 
photon streams are shown at different angles, e.g. 0, 30, 
and 60 degrees, from the maximum, which is always 
perpendicular to the axis. Finally, the oscillating red lines 
on the left reflect the total electric field E=E_rad + E_vel 
as a function of distance. So what you see is the effects 
of E_vel reducing by 1/R^2, while E_rad only reduces by 
1/R and so quickly becomes the dominant field as the 
radius from the charge increases. 



  

Ensemble of Particles

So far so good, but what about an ensemble of particles? After all if we want to calculate
the properties of Bremsstrahlung radiation we need to consider a lot of particles...

Abell 1689 (z=0.18, i.e., about 2 billion
                   light years away)

There is a complication here, because the expressions 
for the radiation fields refer to conditions at retarded times, 
and these retarded times will differ for each particle
and we have an enormous amount of particles...

Solution: Let the typical size of the system be L, 
and let the typical time scale for changes within the system 
be T. If T is much longer than the time it takes light to 
travel a distance L,  T>>L/c, then the differences in
retarded time across the source are negligible.

Does this happen for example in an intra-cluster plasma? 



  

Ensemble of Particles

Solution: call L the size of our cluster.
Call R0 the distance from some point in the system to the field point (i.e., where we are
since we are measuring this field).
But now you see that the difference between each Ri tends to zero as R0 → infinity (since
we are very far away from the cluster!). So we can write:

Now our radiation field is:

Of course we have no idea what are the single
velocities of each particle, neither we know how
many particles there are!

where                       is the dipole moment of the charges.



  

Dipole Approximation

Following the same procedure as for the single particle case, we can find the total power
emitted by an ensemble of particles (in the non-relativistic limit) 
in the so-called dipole approximation:

Now we have the key to understand Bremsstrahlung radiation...

Using Fourier transform we can easily find that: 



  

Dipole Approximation

Following the same procedure as for the single particle case, we can find the total power
emitted by an ensemble of particles (in the non-relativistic limit) 
in the so-called dipole approximation:

Now we have the key to understand Bremsstrahlung radiation...

Using Fourier transform we can easily find that: 

Remember how the Fourier Transform of a derivative works:



  

Dipole Approximation

Following the same procedure as for the single particle case, we can find the total power
emitted by an ensemble of particles (in the non-relativistic limit) 
in the so-called dipole approximation:

Now we have the key to understand Bremsstrahlung radiation...

Using Fourier transform we can easily find that: 

This term instead comes from:



  

Dipole Approximation

Following the same procedure as for the single particle case, we can find the total power
emitted by an ensemble of particles (in the non-relativistic limit) 
in the so-called dipole approximation:

Now we have the key to understand Bremsstrahlung radiation...

Using Fourier transform we can easily find that: 

This comes from Parseval’s Theorem. 

Total energy per unit area in a pulse:



  

Small-Angle Scattering

To derive the properties of Bremsstrahlung radiation we will use an approximation called
small-angle scattering. This is an approximation in which the electron deflected by an 
ion deviates only by a small angle (typically <10 degrees). 

Small angle scatteringSmall angle scattering NOT VALID

This approximation is not necessary but it simplifies the calculations and gives the right
equations. 



  

Small Angle Scattering

b is the impact parameter (i.e., the perpendicular distance between the path of the electron 
and the ion of charge Ze). R is the actual distance between the electron and the ion. 
v is the speed of the electron. 
The dipole moment d=-eR. Therefore its second derivative is: 



  

Small Angle Scattering
Now let’s take the Fourier transform of the second derivative of the dipole moment. 
This is:

(Remember that                                        )

From the dipole approximation we know that the total energy emitted per 
unit frequency is:

So we need to solve the Fourier transform above and
we will know what is the energy emitted per unit frequency. 

The electron interacts with the ion only for a small amount of time of the order of:

(collision time)

Therefore we can write: 



  

Small Angle Scattering
Now let’s take the Fourier transform of the second derivative of the dipole moment. 
This is:

(Remember that                                        )

From the dipole approximation we know that the total energy emitted per 
unit frequency is:

So we need to solve the Fourier transform above and
we will know what is the energy emitted per unit frequency. 

The electron interacts with the ion only for a small amount of time of the order of:

(collision time)

Therefore we can write: 
(the exponential is unity)

(the exponential is zero)



  

Small Angle Scattering

So the energy emitted per unit frequency depends on the change of the electron velocity
during the collision time. 

Now, we have an energy per unit frequency. But what we really want is the radiated power
per unit volume per unit frequency. Remember that for an isotropic emitter:

So we want to find here the energy per unit time per unit volume per unit frequency as well.

where P_nu was the power (i.e., energy per unit time) per unit volume per unit frequency.

dW
dω

→
dW

dωdV dt
How do we do this last step?



  

First we calculate how much has the speed changed (      )  , so we know Δ v

The acceleration (change in velocity) is given by the Coulomb force:

v̇=
F
m

=
Ze2

mb2 where I have used the fact that the interaction occurs at R~b only.

Then we multiply this acceleration by the collision time and we find Δ v

Δ v≈ v̇ τ=v̇
b
v
=

Z e2

mbv

Therefore                depends on the impact parameter b, i.e., it is   

dW
dω

→
dW (b)
dω

∝
Z2e6

m2 v2b2



  

Spectrum of an ensemble of particles with a 
single velocity v

dW
dωdV dtTo find the spectrum                   of an ensemble of particles with a single velocity v

 we need to first integrate over the impact parameter b, then divide by the unit volume
 and time. 

Now, say that the plasma has a certain electron density ne and ion density ni, and 
that all the electrons have the same speed v. The area around each ion that is important
for the interaction is: 

dW
dω dV dt

=neni 2π v∫bmin

∞ dW (b)
dω

bdbdA=2π bdb

(units of 1/volume)



  

Spectrum of an ensemble of particles with a 
single velocity v

Now the treatment on how to choose the boundaries of the integration becomes quite
lengthy and complicated. We are interested only in a few features that will determine
how the final spectrum will look like. 

The final spectrum of plasma with electron having a single velocity v 
will look like the following:

The Gaunt factor contains quantum corrections which we have not taken properly into
account here, but can be approximated as:

(Pν=
jν

4 π
=

dW
d νdV dt )



  

Thermal Bremsstrahlung

How do we go from the spectrum of an ensemble of ions and electrons (with the latter all having
a single velocity v) to the spectrum of an ensemble of ions and electrons with a distribution
of velocities?

First we need to know which distribution of velocities. 

Let’s take the most common case (almost always the case in astrophysics) which is that of 
a thermal plasma, i.e., electrons and ions with velocities distributed according to the Maxwell-
Boltzmann distribution (see also Lecture 3!). 

F (v)dv=4π v2 (
m

2π k T )
3 / 2

e−mv
2
/ 2kT dv

We then need to integrate over this distribution



  

From Lecture3: Matter in Thermal Equilibrium

Suppose to have a plasma in thermal equilibrium (thermal plasma). 
What does this mean in terms of micro-physical properties of the 
matter?

F( v)dv=4 π v2 (
m

2π kT )
3 / 2

e−mv
2
/ 2kT dv

Probability distribution function of (non-relativistic) 
velocities is the Maxwell-Boltzmann distribution: 



  

Spectrum:Thermal Bremsstrahlung

Why there is a minimum velocity in the integral? Shouldn’t we use zero as the minimum?



  

Spectrum:Thermal Bremsstrahlung

Why there is a minimum velocity in the integral? Shouldn’t we use zero as the minimum?

The photons need to be created during the deceleration of the electron. So the initial kinetic 
energy of the electron must be larger than the photon energy. 
This creates a cutoff in the spectrum and this is due to the discreteness of photons, i.e., they
are discrete and not continuum entities. 

vmin=(2h ν/m)
1/2



  

Spectrum:Thermal Bremsstrahlung

Performing the integration one gets:

εν

ff
=

dW
d νdV dt

BE CAREFUL do NOT make a confusion between       and       defined as the emissivity at page 9. 
Also, R&L uses the same symbol       to define the probability of absorption at page 37. 

Furthermore the difference between      and     is the following: 

            → (energy/frequency/volume/time). 

εν

ff ϵν

ϵν

jν

jν            → (energy/frequency/volume/time/solid angle). 

εν

ff

εν

ff

Also, the symbol         is exactly the same as        in εν

ff Pν

The reason why R&L uses different symbols here is correct:       will refer from now on only
to Bremsstrahlung. The symbol       is a general one and it equal to       only for Bremsstrahlung

εν

ff

Pν εν

ff



  

Spectrum:Thermal Bremsstrahlung
Performing the integration one gets:

What do we see here? 
The emission coefficient seem to depend on the temperature (be careful because T is also
in the exponential), on the density of ions and electrons and on the ion charge. 
The frequency dependency is only in the exponential.  The average Gaunt factor can be
 considered very close to unity since 
this is its order of magnitude. 

εν

ff
=

dW
d νdV dt

Also, the spectrum will be basically
 flat, except when exp(-h*nu/kT)
 becomes dominant. 
This happens when the 
thermal energy of electrons
is basically insufficient 
to generate high energy photons.

ε
νff
=

dW
d
ν
dV

dt



  

Thermal Bremsstrahlung: Absorption

If we have thermal emission then we can always use Kirchhoff’s law. 

What happens at low frequencies?



  

Thermal Bremsstrahlung: Absorption

If we have thermal emission then we can always use Kirchhoff’s law. 

εν

ff
=

dW
d νdV dt

=4 π jν
ff

We see that when                we are in the Rayleigh-Jeans regime:

What happens at low frequencies?

This is telling us that the spectrum of Bremsstrahlung is self-absorbed at low frequencies.
Why?



  

Thermal Bremsstrahlung

Remember that the optical depth is defined as: d τν=ανds

Therefore since                                                     we have that                as well. τν∝ν
−2

The smaller the frequencies, the larger the optical depth. This means that radiation is 
absorbed more and more before leaving the system. But this is precisely what
a blackbody is! So at low frequencies we expect a blackbody like spectrum. 

So what is the specific brightness  of Bremsstrahlung
radiation? 

At low frequency we expect it to look like blackbody.
At intermediate frequencies it has to be flat
At high frequencies there must be an exponential cutoff



  

REMEMBER FROM LECTURE 2: 



  

REMEMBER FROM LECTURE 2: 



  

REMEMBER FROM LECTURE 2: 



  

.=
εν

ff R
4 π

.=
jν
αν

=Sν=Bν

Thermal Bremsstrahlung
Now we can understand the 
spectrum of Bremsstrahlung!

At large optical depths: Blackbody

At small optical depths:

εν

ff
=

dW
d νdV dt

=4 π jν
ff

If the region of size R has large optical depth at any frequency then Bremsstrahlung becomes
Blackbody spectrum (solid line). Otherwise is will show the typical flat spectrum in the 
intermediate frequencies, blackbody spectrum at low frequencies at cutoff at high frequencies



  

Cooling Time

Since we know how much does a thin plasma radiate we can calculate the energy losses
and the so-called cooling time: 

energy content of the plasma

rate of energy loss

3
2
(ne+ni)k T

ε
ff =

3nkT
ε
ff

=

Here we have integrated the emission coefficient      over all frequencies:εν

ff

τcool=6×103T 1/2ne
−1 ḡ ff yr

L=ε
ff V

This is useful to calculate the cooling time:



  

Cooling Time: HII regions

The Orion nebula is an HII region. 
Here you see the radio continuum overlaid 
to the optical image. The radio continuum is
Bremsstrahlung emission.

τcool=6×103T 1/2ne
−1 ḡff yr

What is the cooling time of the nebula? 

Here ne ~ 100-1000 cm^-3
T ~ 10,000 K

The cooling time is of the order of a few
thousands years. 

But the nebula has an age of 3 Myr. 
So what does this mean? 



  

Cooling Time: Intracluster medium

Here the typical temperatures are 10^7 K (indeed we
see most radiation in X-rays, whereas in the Orion 
nebula it was mostly at radio waves).
The typical densities are also very low: 

ne~0.001 cm^-3

τcool=6×103T 1/2ne
−1 ḡ ff yr≈10Gyr

Intracluster gas takes a very long time to cool down!



  

Thermal Blackbody Bremsstrahlung Synchrotron Inverse 
Compton

Optically thick – YES NO

Maxwellian 
distribution
of velocities

YES YES –   

Relativistic 
speeds

– – – 

Main Properties Matter in 
thermal 
equilibrium

Matter AND 
radiation in 
thermal 
equilibrium

Radiation emitted by 
accelerating particles

Summary of Radiation Properties

Rules of thumb: 
1. Blackbody is always thermal, but thermal radiation is not always 
blackbody (e.g., thermal Bremsstrahlung)
2. Bremsstrahlung can be thermal or non-thermal. 
3. Bremsstrahlung becomes blackbody when optical depth >>1.
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