
  

Compton & Inverse 
Compton Scattering



  

Thomson Scattering

Thomson Scattering is a process by which an electromagnetic wave is scattered in to 
random directions by a free electron. It is applicable when                   , with m the 
electron mass. 

First of all, let’s consider a linearly polarized e.m. wave incident on a free electron. 

h ν≪mc2

Linearly polarized wave

If we are in the non-relativisic limit, then v<<c and thus we can neglect the Lorentz force. 
(Remember that an e.m. wave has |E| = |B|)

Which forces act on the electron as the e.m. interacts with it? 



  

We are left with the electric force: 

F=e ϵ E0sin(ω0 t ) force of a linearly polarized wave acting on an electron

Here     defines the direction of the E field. 
We can rewrite this force as:

ϵ

Let’s recall the definition of a dipole moment from Lecture 5: d=e r

Therefore:

And: 



  

Now remember what we said in Lecture 5 about the Dipole Approximation (Slide 20):

We can therefore calculate the time average power from       

(and remembering that the <sin^2(x)> = 1/2)



  

This gives: 

Remembering that the time averaged Poynting flux is defined as: ⟨S ⟩=
c
8π
E0
2

we can write the power as:

where we have defined the differential cross section         for scattering into          for a 
polarized electromagnetic wave:

dσ dΩ

(classical electron radius)



  

Unpolarized wave

An unpolarized electromagnetic wave traveling in the x-direction is a superposition of many waves.  For each 
of these waves the electric field vector is perpendicular to the x-axis, but the angle it makes with the y-axis is 
different for different waves.  For a polarized electromagnetic wave traveling in the x-direction, the angle the 
electric field makes with the y-axis is unique.  Natural light is, in general, unpolarized.  The direction of the 
electric field changes too quickly to be measured.

To find the total cross section we integrate over the whole solid angle and we get:

=

This one above is the Thomson cross section for an electron and polarized e.m. waves.
Note that also the outgoing e.m. wave is polarized (in the plane defined by       and     )ϵ n

What about unpolarized radiation? 
The R&L syas that: “unpolarized radiation can be defined as the superposition of two linearly 
polarized waves with perpendicular axis”. 



  

In other words: unpolarized radiation is a misnomer, since light in this state is composed
by a rapidly varying succession of different polarization states. Perhaps a better name
would be randomly polarized light. 

Mathematically this wave can be represented by two orthogonal linearly polarized waves
of equal amplitude varying incoherently. The word “incoherent” means that the sinusoidal
dependence (coherence) of the electric field is lost. 

Let’s call k the direction of propagation
before the scattering and n the direction
after the scattering. 
Now choose the two orthogonal waves
such that the first wave is along eps1
in the plane n – k and the second is 
along eps2 which is orthogonal to this
plane and eps1. 

Now the total cross section will be the average of the two polarized states. 



  

Differential Thomson cross section for unpolarized radiation:

What shape is this? 

Remember what we said in lecture 5: the power emitted per unit solid angle 
by an accelerating charge depends as the square of the sinusoid of the angle between
the direction of the acceleration and the direction of propagation of radiation



  

Larmor’s Formula

What can we say about the radiation field when the velocity is <<c? (non-relativistic case)

In this case beta<<1 and thus we can simplify the electric and magnetic field expressions
and obtain:

What is the Poynting vector S? (remember 
that the Poyinting vector defines the direction
towards which the energy carried by the em 
fields is directed. Here S is parallel to n; 
S has units of erg/s/cm^2, i.e., energy flux). 

Since: 

The Poynting vector has magnitude:

LECTURE 4



  

Larmor’s Formula

Note the angle theta!

The energy of the em. field is not isotropic but
there is a sin^2 !!

LECTURE 4



  

Larmor’s Formula

Now let’s calculate the power in a unit solid angle about n. To do this we multiply the 
Poynting vector (units: erg/s/cm^2) by an area dA (cm^2) to get a power (erg/s). 
How do we choose dA? We know that the solid angle dOmega = dA/R^2. Therefore: 

And now we integrate the above expression over the whole solid angle Omega=4*pi
and we obtain the total power emitted by an accelerated charge in the non-relativistic
approximation:

Larmor’s 
Formula

IMPORTANT: The power emitted is proportional to the square of the charge and the
square of the acceleration.

LECTURE 4



  

The animation represents a charged particle being 
switched up and down in a very strong electric field, 
such that the shape being traced out in time aligns to an 
approximate square wave. The ovals reference lines 
drawn to the left and right of the charge correspond to a 
cross-section through the doughnut toroid, as illustrated 
in the previous diagram. Based on the criteria of the 
Larmor formula, when a charge is subject to 
acceleration, i.e. during the transition positions, it 
radiates power also subject to the angle θ with respect to 
the axis of charge motion. As such, the energy density is 
reflected by the depth of the yellow shading, symmetrical 
about the axis of motion. However, the intention of left-
right sides of the animation is to be somewhat illustrative 
of wave-particle duality in that the left reflects the electric 
field lines, while the right reflects the streams of photons 
being emitted by the charge. The field lines or photon 
streams are shown at different angles, e.g. 0, 30 and 60 
degrees, from the maximum, which is always 
perpendicular to the axis. Finally, the oscillating red lines 
on left reflect the total electric field E=E_rad + E_vel as a 
function of distance. So what you see is the effects of 
E_vel reducing by 1/R^2, while E_rad only reduces by 
1/R and so quickly becomes the dominate field as the 
radius from the charge increases. 

LECTURE 4



  

Pattern of Scattered Radiation 
(Thomson Electron Scattering)

(Try to plot at home the function sin^2(theta)  and 1 + 
sin^2(theta) in polar coordinates as  an exercise). 

Note that after the integration:

Also the scattered radiation will be polarized
with a certain degree: 



  

Electron scattering optical depth

Remember that: 

Here sigma is the Thomson scattering cross section (units: cm^2)
n is the number density of particles. 

The Thomson cross section has a value of 6.65e-25 cm^2

Let’s go back to our problem. We said n~10,000 and R=10^19 cm. 

Therefore the optical depth due to electron scattering is: 

τ=nσT R≈0.07

Thus our HII cloud is optically thin both for electron scattering
and for free-free absorption, thus we are really seeing 
Bremsstrahlung radiation!



  

Recap Thomson Scattering

Recall what we said about Thomson (electron) scattering:

1. It occurs when the photon’s energy is << electron rest mass
2. The electrons move non-relativistically: v<<c. 

The radiation pattern has a “peanut shape”. 
The incoming and outgoing photon has the
same energy and the electron does not 
change energy in the scattering process
(elastic or coherent scattering).



  



  

Direct
Photon loses energy
Electron gains energy

Inverse
Photon gains energy
Electron loses energy



  

Preamble on the notation:

– The prime symbol  '  means that the quantity is calculated in the
rest frame K'  (i.e., the electron's rest frame in this case)

– No prime symbol means the quantity is calculated in the lab frame 
K (i.e., observer frame). 

– The under-script 1 means that the quantity is calculated after the 
scattering has already occurred. 

– No under-script means that the quantity is calculated before the 
scattering.

E.g.:   E → energy before the scattering in K
E1 → energy after the scattering in K

     E' → energy before the scattering in K'
     E'1 → energy after the scattering in K'



  

Direct Compton
Let’s start by looking at the momentum and energy of the photon and electrons. 
In Thomson scattering the photon has no momentum (classical electrodynamics). 
However, from quantum mechanics we do know that a photon has a momentum. 
This means that any scattering process cannot be purely elastic since the electron will
recoil due to the momentum of the photon.  

The photon has initial energy       and final energy      .ϵ ϵ1

The photon has initial momentum           and final momentum         .ϵ/c ϵ1/c

The electron has initial energy mc^2  and final 
energy E/c.
The electron has initial momentum 0 
and final momentum p.



  

Direct Compton
Using the conservation of energy and momentum it’s easy to show that the final and initial
photon energies are related in the following way:

Direct Compton Scattering

This can be rewritten in terms of wavelengths as:

where the subscript “c” refers to the Compton wavelength:



  

Direct Compton: elastic vs. inelastic

When the wavelength of the incoming photon 
is smaller than the Compton wavelength then
the Compton scattering is important. The net 
effect is to decrease the energy of the photon. 
When the wavelength is larger than the 
Compton wavelength then elastic scattering 
(i.e., Thomson scattering) is a good 
approximation and the photon does not 
change wavelength (or energy).

Direct Compton

λ1−λ≈0

Thomson Scattering



  

Klein-Nishina Cross Section
Quantum effects enter in the Compton scattering not only because of the photon momentum. 
They also change the cross section of the electron. 

When the energy of the photon approaches the rest mass energy of the electron, then 
the Thomson cross section changes and becomes the so-called Klein-Nishina cross section:

The “take home” message is that the KN cross section is smaller than the Thomson one



  

Klein-Nishina Cross Section
It’s important to have a look at the differential KN cross section per unit solid angle, since
this is how we understand the radiation pattern of the scattering process:

If we plot this function, we see that the scattering is not isotropic but becomes preferentially
“forward” as the energy of the photon increases

Note that the x~0 corresponds to the
Thomson scattering and the familiar
“peanut shape”. 



  

Radiation Pattern

The green “peanut shape” pattern is the Thomson scattering (x~0, coherent scattering)
As the energy is increased the peanut shape disappears and the scattering becomes
elongated in the “forward” direction. 

e-



  

Inverse Compton Scattering
The direct Compton (or simply Compton) scattering is not a very common process in 
astrophysics, but its inverse process is very widespread: inverse Compton. 

This is a relativistic and quantum phenomenon at the same time (whereas direct Compton 
is a purely quantum phenomenon). 



  

How does the initial photon energy change after a 
collision with the relativistic electron? 

(Inverse Compton)

The first question we would like 
to answer now is: 



  

Remember the notation:

– The prime symbol  '  means that the quantity is calculated in the
rest frame K'  (i.e., the electron's rest frame in this case)

– No prime symbol means the quantity is calculated in the lab frame 
K (i.e., observer frame). 

– The under-script 1 means that the quantity is calculated after the 
scattering has already occurred. 

– No under-script means that the quantity is calculated before the 
scattering.

E.g.:   E → energy before the scattering in K
E1 → energy after the scattering in K

     E' → energy before the scattering in K'
     E'1 → energy after the scattering in K'



  

Inverse Compton

Step 1: Photon and e- in lab frame → e- rest frame

Step 2: Photon and e- interact in e- rest-frame

Step 3: Back to the lab frame



  

Step 1: lab frame → e- rest frame

Inverse Compton

epsilon is the energy of the photon in K
epsilon' is the energy of the photon in K'

BEFORE THE SCATTERING (see Eq. 4.12 on Rel. Doppler)
Note: The photon energy has increased in the e- rest frame 
(due to the relativistic Doppler boost)

ϵ '=ϵγ(1−βcosθ)



  

Step 2:  Photon and e- interact in e- rest-frame

Inverse Compton

We are now in the e- rest frame, so we can 
use the normal Compton formula (Eq. 7.2)

ϵ1 '=
ϵ '

1+
ϵ ' (1−cosΘ)

mc2

≈ϵ ' [1− ϵ '

mc2
(1−cosΘ) ]



  

Step 2:  Photon and e- interact in e- rest-frame

Inverse Compton

Note: 

ϵ1 '=
ϵ '

1+
ϵ ' (1−cosΘ)

mc2

≈ϵ ' [1− ϵ '

mc2
(1−cosΘ) ]

cosΘ=cosθ1 ' cosθ '+sin θ ' sin θ1 ' cos(ϕ '−ϕ 1 ' )

Phi is now the azimuthal angle between scattered photon and incident photon in the e- rest frame



  

Step 2:  Photon and e- interact in e- rest-frame

Inverse Compton

Note 2:  The photon energy has decreased in this process 
since some energy was given away to the electron

ϵ1 '=
ϵ '

1+
ϵ ' (1−cosΘ)

mc2

≈ϵ ' [1− ϵ '

mc2 (1−cosΘ) ]



  

Step 2:  Photon and e- interact in e- rest-frame

Inverse Compton

Note 3: If the photon energy is still << mc^2 then we are
still in the Thomson regime

ϵ1 '=
ϵ '

1+
ϵ ' (1−cosΘ)

mc2

≈ϵ ' [1− ϵ '

mc2
(1−cosΘ) ]≈ϵ '



  

Inverse Compton

Step 3: Back to the lab frame

ϵ1=ϵ1 ' γ(1+βcosθ1 ' )

Note: We have a second Doppler boost because now we go back to 
the lab frame and use again Eq. 4.2. The photon energy has increased 
again  (second relativistic Doppler boost)



  

Some comments: 

i. In our step 2 we have used the Thomson scattering, i.e., we have 
assumed that the photon energy is << mc^2. In other words in the electron 
rest frame the scattered photon will have the same energy as before the 
scattering (E'1 = E'). 

ii. The photon gains an energy in step 1 and 3 by a factor gamma (so in total 
it gains a factor gamma^2 because of the double Relativistic Doppler boost). 

Iii. The photon loses energy in step 2 (but this loss is basically ~0 if we’re in 
the Thomson regime). 

Summary:

Step 1. K  → K'    (1st Rel. Doppler boost)
Step 2. Compton Scattering   (photon loses energy to the electron)
Step 3. K' →        (2nd Rel. Doppler boost)



  

Example: 

The rest mass energy of an electron is 511 keV. 

If the photon in step 2 is still in the Thomson limit (after gaining a factor 
gamma in energy in step 1), then it will gain another factor gamma in 
energy in step 3. 

For example, say that gamma = 10 (i.e., electron velocity is ~0.95 c). 
Initial photon energy is 0.003 keV (visible light)
After one scattering (step 1) the photon has energy of the order 0.03 keV. 
Since 0.03 keV << 511 keV we are still in the Thomson limit (step 2). We 
boost the photon again (step 3) and the final energy will then be 0.3 keV 
(soft X-rays) 



  

Accreting Neutron Stars
Accreting Black Holes



  

Cygnus X-1

15 Msun black hole around 
a blue supergiant star. 

Easily visible in optical with 
a small telescope 
(v ~ 9 mag)



  

A final step to Inverse Compton

The last equation we derived                                        might bother you 
because not all quantities are calculated in the lab frame K. 

We can add a final step by transforming the angles from K' to K by using
the formula for the aberration of angles (see Lecture 3). 

In this way after some algebra we arrive at the expression: 

ϵ1=ϵ1 ' γ(1+βcosθ1 ' )

ϵ1=ϵ
1−β cosθ
1−β cosθ1



  

Maximum and Minimum Energy 

ϵ1=ϵ
1+β

1−β

We can now see that wen theta = pi and theta1 = 0, then the photon is 
scattered along the electron velocity vector (head-on) and epsilon1 is 
maximized. 

When theta = 0 and theta1 = pi, then the photon scatters “from behind” the 
electron (tail-on) and epsilon1 is minimized

ϵ1=ϵ
1−β

1+β

So, in fact, the photon is gaining energy in the former case and losing 
energy in the latter. 

Question: what happens if we have many photons coming from all 
directions? Will inverse Compton produce a higher energy photon 
distribution or not? 



  

Answer
If we have many photons, collisions in which the photon overtakes the electron 
(in K) will result in a reduced photon energy, but, on average, the energy gain 
will be positive because there are relatively fewer overtaking than head-on 
collisions. Remember the example of the blob surrounded by broad line 
regions (Lecture 3 and 4). 

 



  

Answer
If we have many photons, collisions in which the photon overtakes the electron 
(in K) will result in a reduced photon energy, but, on average, the energy gain 
will be positive because there are relatively fewer overtaking than head-on 
collisions. Remember the example of the blob surrounded by broad line 
regions (Lecture 3 and 4). 

Why? 

We'll show later that the average photon energy after one IC 
scattering is: 

〈 ϵ1〉=
4
3

γ
2
ϵ



  

Inverse Compton: isotropic photon distribution

What happens for an isotropic distribution of photons? (But still 
one single electron) Let's calculate the total emitted power in 
this case.

Let's start by defining the differential photon number density dn. 

dn=dN /dV=(dN /dX )dx0

dX  and dV are the 4D and 3D space volumes and are related 
in the following way: 

dX=dx0 dx1dx2dx3=dV dx0

It can be shown that dX  is a Lorentz invariant (see Section 4.9 of R&L). 
Therefore since dN is invariant (it's a number), we have that dn transforms
as time (dx0). 



  

We also know that time and energy (Lorentz) transform in the exact 
same way, therefore we can create a new (Lorentz) invariant: 

dn
ϵ =Lorentz Invariant

With this invariant we can now easily calculate the number of Compton 
scatterings per unit time per electron in the general case

The expression for the total scattering rate is most readily written 
down in terms of the rate in K'. In K' immediately before a 
scattering the electron is at rest; time intervals are related by dt = 
gamma*dt', and the scattering rate is:

dN
dt

=γ
−1 dN '
dt '

=γ
−1c∫σ dn '

Here sigma is the total Compton cross section.



  

Now we use the invariant                           plus the expression we found 
before for the energy of the photon K' before the scattering occurs:

ϵ '=ϵγ(1−βcosθ)

dn / ϵ=dn ' / ϵ '

In this way we obtain the following expression: 

dN
dt

=γ
−1 dN '
dt '

=γ
−1c∫σ dn '=c∫σ(1−βcosθ)dn

What is  the meaning of                      ?c(1−βcosθ)

It is just the relative velocity of the photon and electron along the 
direction of the electron's motion.



  

dE 1

dt
=
dE 1 '

dt '

We know also that power (=energy/time) is a Lorentz invariant, 
therefore we can write: 

In the Thomson limit we have           and thus we can write for the 
total power emitted:

ϵ1
'
≈ϵ

'

dE 1

dt
=
dE 1 '

dt '
=ϵ1

dN
dt

=∫σT cϵ ' dn '=σT c γ
2∫(1−β cosθ)

2
ϵdn

This expression refers now solely to quantities in K. 

For an isotropic distribution of photon we have: 

dE 1

dt
=cσT γ

2 (1+
1
3
β

2 )U ph

Where Uph is the total photon energy density



  

IMPORTANT
This expression refers only to the power in the scattered radiation. 
It is NOT the power in the radiation before the scattering. 

Therefore the net power emitted by the electron is: 

[Total energy loss of the electron] = 
[Power in radiation after scattering] – [Power in radiation before scattering] 

dE 1

dt
=cσT γ

2 (1+
1
3
β

2 )U ph

dE 1

dt
=−σT cU ph

P compt=
dE rad
dt

=cσT γ
2 (1+

1
3
β

2 )U ph−σT cU ph=
4
3
σT c γ

2
β

2U ph



  

Synchrotron vs. Compton Power

P compt=
4
3

σT c γ
2
β

2U ph

P synch=
4
3

σT c γ
2
β

2U B

Why are these two powers so similar? 
After all we have a very different physical mechanism operating. 



  

Synchrotron vs. Compton Power

The reason for this is that the energy loss rate depends upon 
the electric field which accelerates the electron in its rest 
frame and it does not matter what the origin of that field is.

P compt=
4
3

σT c γ
2
β

2U ph

P synch=
4
3

σT c γ
2
β

2U B

Why are these two powers so similar? 
After all we have a very different physical mechanism operating. 

In the case of synchrotron radiation, the electric field is the (v × B) field 
due to motion of the electron through the magnetic field whereas, in the 
case of inverse Compton scattering, it is the sum of the electric fields of 
the electromagnetic waves incident upon the electron.



  

Due to relativistic electron

due to Thomson scattering assumption

Due to relativistic electron

Here we still need hv' << mc^2

STEP 1

STEP 2

STEP 3



  

Single Particle Spectrum

As we did for the Synchrotron radiation, we now want to check 
what is the spectrum of the (isotropic) scattered radiation emerging 
after a collision with a single electron

The derivation is lengthy and we'll skip it (See 7.3 in R&L if interested
in the mathematical details).

Here we give the general properties. 

First we've seen that: 

We've seen that the maximum of this function is: 

Which can be rewritten as 

ϵ1=ϵ
1−β cosθ
1−β cosθ1

ϵ1=ϵ
1+β

1−β

ϵ1=ϵγ
2
(1+β)

2
≈4 γ

2
ϵ

¿



  

Therefore the IC spectrum (for single scattering) must fall off at 

Second: from the power emitted we know that 

The average number of photons scattered per unit time is:

4 γ
2
ϵ

P compt=
4
3

σT c γ
2
β

2U ph

dN
dt

=
σT cU ph

ϵ

Therefore the average photon energy after a scattering is:

〈 ϵ1〉=
4
3

γ
2
ϵ

This is a consequence of the fact that: 

P compt =



  

Some photons (tail-on) will be downscattered
Some (most) photons (head-on) will be upscattered
Therefore the low frequency part of the spectrum will be filled by 
downscattered photons. The high frequency part by upscattered 
photons. 



  

Single Particle Spectrum

4 γ
2
ϵ

Upscattered photons

Downscattered photons



  

Gamma Ray Bursts



  

Sunyaev Zel'dovich Effect
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