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Photon scattering by electrons - Overview

Low energy photons
hw < mec?

Thomson scattering

High energy photons
hw > m.c?

Compton scattering

U << C Classical treatment QU'dl'I[U]Tl treatment
frequency unchanged incorporating photon
momentum
frequency decreases
. 1 L
vhw <€ mec Yhw 2> mec
Py Inverse Compton [nverse Compton

Photons gain energy from
relativistic electrons
Approximate with classical
treatment in electron rest frame

Frequency increases

(Quantum treatment 1n electron rest
frame
Photons gain energy from relativistic

electrons



Single Particle Spectrum

Upscattered photons
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Multiple Scatterings (yhv<mc?)

zf : [
Comptonization parameterI

average # of scatt.| x |average fractional energy gain for scatt.|

Important: If y>1 then Comptonization is important!
(This does not necessarily mean
that there are many scatterings...)




Multiple Scatterings (yhv<mc?)

y = |average # of scatt.| X|[average fractional energy gain for scatt.|

Let's first evaluate the average fractional energy
change per scattering




Average energy

We have seen last week that when (monochromatic) photons
scatter (once) off one relativistic electron, then:

_4 >
<€1>—3Y €

Gamma depends on the energy of the electron and has a single
value since there is only one electron. So the question now is
what is <gamma”2> ? In other words, if we have many
(relativistic) electrons, what happens to the average gain in
energy after one scattering?

We will start first by assuming a thermal distribution of electrons.
The reason for this is that this case is the simplest and will help us
to find a few general parameters.



Thermal Compton (relativistic case)

We have the following starting assumptions:

1. thermal distribution of electrons

2. electrons arze relativistic
3. yhv<mc

The relativistic Maxwell-Boltzmann distribution has the form:

N(y)=yte ™"
_ kT

2
mc

)

. 2 S
We want to find <Y >and SO0 we can use the MB distribution to calculate
this average.



Thermal Compton (relativistic case)

2

J‘y y2 —y/Z
fY2 —y/Z

kT

2
mc

—12>°=12

Therefore we now know that when there is a thermal distribution
of relativistic electrons, the average gain in energy of the photons per
scattering is proportional to the square of the thermal energy of the electrons

y = |average # of scatt.| X||average fractional energy gain for scatt.]




Thermal Compton (relativistic case)

Let's now calculate the average number of scatterings I

y = |average # of scatt.]

X |average fractional energy gain for scatt.]

To calculate the average number of scattering you should think
at the path that the photon does in the cloud of electrons as a
“random walk” (see Section 1.7 on the R&L).



Multiple Scatterings (y hv < mc?)

y = |average # of scatt.]

T — D’T’RR

n = electron density.
R = source size

X |average fractional energy gain for scatt.]

Case 1: tau>1

5 R
D=cAt = 74 — =

s

Total path traveled by photon
(valid when tau>1)

R

Case 2: tau<l

avg.Nr.scatt. =~ Tt




Multiple Scatterings (y hv <« mc?)

y = |average # of scatt.| x |average fractional energy gain for scatt.|

T = ornhRk n = electron density.
I T R = source size

-—
o= e reR ‘\%

Average nr.
of scatterings Mean free path L



Multiple Scatterings (y hv <« mc?)

y = |average # of scatt.| x [average fractional energy gain for scatt.|

Case 1: tau>1 Case 2: tau<l

Average # of scatt. = T} Average # of scatt. = Tr




We have everything we need now for calculating the spectrum for
photons doing multiple scatterings off a thermal distribution of relativistic

electrons (when we are in the Thomson limit).

Before continuing though, let's first check what happens when the
electrons are non relativistic. The average # of scatt. does not
change wrt the previous case. We need to calculate only the

change in fractional energy.

y = |average # of scatt.] x||average fractional energy gain for scatt. |

2
NOTE: Non-relativistic here means that kKT << mc



Thermal Compton (non rel. case)

If we are in the non-relativistic case then we are considering also
the direct Compton case. However, there will be both electrons that gain
energy from the photons and electrons that give energy to the photons.

Why?

Photon scattering by electrons - Overview

Low energy photons High energy photons
2 2
hw <€ m.c hw > m.c”
Thomson scattering Compton scattering
v ¢ Classical treatment Quantum treatment
frequency unchanged incorporating photon
momentum
frequency decreases

9 9
yhw € mec” yhw > m.c”

Inverse Compton
Photons gain energy from
relativistic electrons
Approximate with classical
treatment in electron rest frame

Frequency increases




Thermal Compton (non rel. case)

Numbers of Particles

Speed



Numbers of Particles

Thermal Compton (non rel. case)

These are the electrons
that give energy to the
photons.




Thermal Compton (non rel. case)

Numbers of Particles

Speed

These are the electrons
that gain energy from the
photons.



Thermal Compton (non rel. case)

Let's take the energy change from one scattering and average it over a
MB-distribution (as we did before for the relativistic case).

From what we said before, in the non-relativistic case we expect:

— __€
=X >

mc

Ae
c

Here alpha is a constant to be determined.
The “-epsilon” term corresponds to the energy removed in the direct

Compton, whereas o X is the energy gained by the photons due to
the thermal energy of the electrons.

Where does this come from and what is alpha?



Thermal Compton (non rel. case)

Remember what we said last week:

4
Pcomptzg(jTCyzﬁzUph

Since we are in the non-relativistic limit, then gamma~1 and beta<<l
the energy loss per unit time for a non-relativistic electron becomes:

4 4
PcomptNEOTCBZUphZEOTCISZnphE

where n,, Is the number of photons and epsilon their energy.

The number of collisions that the electron suffers per unit time is:

N

T = MenOrC



Thermal Compton (non rel. case)

The mean energy loss per collision, for the electron, i.e. the
mean energy gain,for the photon, becomes:

PC t 4 2
Ae)= ompton _ 7
Ae)=—nia 3P e

This shows that the mean energy gain is of the order of the velocity
sguared (since beta=v/c). But in a thermal distribution we know that:

1 mv2~§kT
2 2

Therefore the mean energy gain must be:

P kT
Ae)= ompton:4 S>o=4
< €> dN /dt mc2 £



Summary

Relativistic Electrons Non-Relativistic Electrons

e Gain in energy of photons prop to (KT)*2 « Galin in energy of photons prop to (kT)
 All photons gain energy « Some photons gain energy (upscattering)
« Some photons lose energy (downscatt.)

A€_ 16 kT |° Ae  (4kT—¢)

c 2 c 2
mc mc

tau>1 tau<l

Average # of scatt. = Tr Average # of scatt. = ©r




Compton Spectrum (rel.)

If the electron distribution is a power-law or a thermal one the result
will be still a power-law. Let’s first see the case for a thermal distribution.
Call A the mean amplification of photon energy per scattering:

2

kT
mc*

c
A=—2~ < =1632°=16

Assume that an initial photon distribution has a mean energy :

€,-<<<Y2>_1/2 mCZ
and intensity I(epislon_i) at epislon _i
Then after k scatterings the energy of a mean initial photon will be:

k
€, ~cA



Compton Spectrum (rel. and tau<1)

Now, if the medium is of small optical depth the probability of a
photon undergoing k scatterings before escaping the

Comptonizing cloud is approximately:

k
Prob.~Tt

The intensity of the emerging
Compton radiation will
therefore decrease by a
factor tau as a function of
energy (or frequency) of the
radiation.

The spectrum will look like In
the figure to the right.
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Compton scattering (non rel.)

When the photons diffuse along the energy axis (i.e. sometimes
they lose, but more often they gain energy), then the time
evolution is described by a diffusion equation. Most easily

this equation is written in terms of the phase-space density
(occupation number) n(x) of photons of energy x = epsilon/kT.

The diffusion equation is called in this case the Kompaneet

eguation:
on 1Y o| , on ) hv
— =| — | —| x| —+n+n X=—o
dy (x| ox ox k,T

Generally, the solutions of the equation have to be found numerically,
but there are a number of cases in which analytic solutions can be found.




Compton scattering (non rel.)

Ae  (4kT—¢)

c 2
mc Recoil effect (Downscattering & Cooling)

Upscattering by
thermal electron Non-linear term (induced

§\ / scattering)
on 1Y o| , on ; hv
— =|—= | X'| —+n+n X=——o
dy |\ x° ) ox ox k,T

Generally, the solutions of the equation have to be found numerically,
but there are a number of cases in which analytic solutions can be found.




Solutions to the Kompaneet Equation

A family of (analytical) solutions for the Kompaneet Equation can be found

when the amount of Comptonization is either weak (y<<1), relatively strong
(y~1) or very strong (y>>1).

In the first two cases the solution is a power-law spectrum with spectral index
alpha:

The positive root is a solution when y~1
The negative root is a solution when y<<1



Case y<<1: Very unsaturated

In this case alpha~2/sqrt(y)>>1

 log I

Only a small fraction of photons
Interact and are Comptonized.
A steep power-law is created

L]
escape w/o scattering

escape after lst scattering
V—le.

2nd scattering

log v




Case y~1: unsaturated

In this case alpha~1

Examples: hard X-ray spectra

of Galactic black hole candidates,
accreting neutron stars,

some active galactic nuclei (Seyferts).

, log Iu




Case y>>1: Saturation

For the first scattering order, | ]
nearly all photons are scattered. S %
Therefore the number of photons
escaping at each scattering -
order is the same.

il

However, this cannot be

Log F(x)
S

going on indefinitely, gt ! | |
since there is a limit i | {_ i A -
from the energy of the N B | d 3 : J -
electrons. : i ! S ;
- . | i | o\ i
When this limit is reached, -} : ' | | EERVEER Y -
the photons show a “bump” | AL ¢ i
|

which is nothing but the :

|
|

1] I I I 5 N I &
Wien spectrum. - - I R L R L WS £
P X, Ax, A®%x, A3x, A%x, A%x, ASx, A"x,

Log x
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Sphere with kT, = 0.7mec? (~ 360 keV), seed photons come from
center of sphere.

y < 1. pure power-law spectrum.
y < 1: power-law with exp. cut-off.
y > 1. “Saturated Comptonization”.




Comptonization
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CMB photons have in general a ~1% probability to interact with a hot electron in the ICM
(intracluster medium)
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Comptonization

¢!

(b) Unsaturated, y

__J{ ' Cygnus X-1
SR/
:f 1 log v
i |J|l s
-| I.+|!I|.I ||JI||| 1 L1 ||tt|| 1 1 iIIII|| 1 L LpLLl v
1 10 100 1000 10® i
E [keV]

Accreting Black Holes and Neutron Stars
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Comptonization

oh 23h 22h 21h 20h 19h 18h 17h

+60°

+50° -,
+40°

+30°

~m ‘.
\éo . 6992/5 16960 4

+20°

Apparent magnitude V ~ 9 mag.
Easily visible with a small
telescopel/binocular!

21h 20h

@ 0 0ueinn TSKY,



-

Coma Cluster Coma Cluster

X-Rays * Optical « " , | ' -

Bremsstrahlung

(“braking radiation”)




Relativistic Bremsstrahlung

- Take a distribution of relativistic electrons and non-rel. ions.

Move to the reference frame of the electron. The e- sees the ion approaching at
relativistic speed. The electrostatic field of the ion is seen as a “pulse” of radiation
with E and B orthogonal (electromagnetic pulse).

- Now take the radiation of this pulse and Compton scatter off the electron.

- Transform back to the lab frame (ion reference frame) and obtain the relativistic
bremsstrahlung radiation. (See e.g., Section 5.4 on R&L).

Ay

¢ Electron

b




Comptonization: Non-Thermal Distribution

Let’s start with relativistic electrons with an isotropic non-thermal distribution:

dF '

N{y) = Ky ? = N(E) av

Ymin < 7Y < Ymax
Then for simplicity, let’'s take a monochromatic field of photons with frequency V,

From our previous discussion, we know the average Compton frequency, and we can
find an expression for the Lorentz factor in this way:

) %—1,!2 3\ /2

B 4,

4 v\ 2 |dy
BT S ( ) dn
Now we can derive an emission (erg/volume/time/frequency):

dv

3 411

_ _ dy _(4/3)~ U (v
evd\/—P(y)N(y)dy'>8V—P<Y)N(Y)dv— 9 JT"K;D' (;D)

|
2

where « =

Note again the similarity with synchrotron radiation [power law p gives a power law with a
slope (p-1)/2]



Svnchrotron
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Synchrotron spectrum of the Crab Nebula.
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What is this
bump here?
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Synchrotron spectrum of the Crab Nebula.

—D 0 ) 10
Log,(E, /eV)

15

—D 0 O 10 15
B o | I I | I LI L | I | | I I | }
4 1 7°
[ .,r"f” - —10
i/ FAT ==
w— MAGIC ;
&« Fermi A0 B+ —12
/l—-—| H.E.S.3. |l y Y\ -
— —&— COMPTEL B
| —8— CANGAROO \A[ﬁﬂh} e
__'——i— VERITAS %MEG{ED ) —14
i 7 \
[ | | L1 1 1 I l';*"l- | I I I 1 I I |~ _ 16

Synchrotron
Self Compton



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

