
Lecture Notes 1

Fundamental Forces Relative Strength

Two out of the four fundamental forces are long range: gravity and electromagnetic force.
Assume you have two protons of mass “m” and charge “e” who interact at a distance “r”.
Then (in cgs units):

Fg =
Gm2

r2
Fem =

e2

r2
(1)

Therefore the ratio is:

Fem

Fg
=

e2

Gm2
=

(

e2

~ c

)

/

(

Gm2

~ c

)

=
α

αG
≈ 1036 (2)

Here α = e2

~c = 1

137
is the fine structure constant and αG ≈ 6 × 10−39 is the gravitational

coupling constant.
Conclusion: The e.m. force is dominant in atoms and nuclei, and gravity has basically no
effect.
But when does gravity become important ?

Take now a body of mass M and radius R, composed by N atoms of mass A and atomic
number Z:

M = N Amu ≈ N Amp (3)

R ≃ N1/3
a0

Z
(4)

where a0 is the Bohr radius of an atom (i.e., it is the “characteristic radius” of the electron
cloud).
Therefore:

EG =
−GM2

R
= −N2

GA2m2

R
≃ −N5/3A2Z

Gm2
p

a0

= −N5/3αGα mec
2A2Z (5)

The internal energy of an H atom is:

Ei =
e2

a0

= α2mec
2 (6)

And for N atoms with charge Z it becomes:

Ei = Nα2mec
2Z3 (7)

The total energy is therefore:

ETOT = EG + Ei =
(

N−5/3αGα A2Z + Nα2Z3

)

mec
2 (8)

Taking A = 2Z and ETOT = 0 we get:

4N5/3αGα Z3 = Nα2Z3
→ N ∝

(

α

αG

)3/2

≃ 1054 (9)
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This implies that the minimum mass required to have a predominance of gravity over the
e.m. force is:

Mmin ≃ 1054
· mp ≈ 1030g ∼ 1MJupiter ∼ 0.001M⊙ (10)

Rmin ≃ 1054/3
· a0 ≈ 1010cm ∼ 105km ∼ 1RJupiter ∼ 0.1R⊙ (11)

Conclusion: objects with M < Mmin are not mainly stabilized by the gravitational
force, but by solid state forces. Objects like White Dwarfs (henceforth referred to as WD)
where the two most important forces are e.m. and gravitational, are stabilized by gravity.
Suppose now you have an object in which gravity competes with the strong force instead of
the e.m. ones. What is the mass required for gravity to dominate ? We can use the identical
argument outlined above, with the difference that we substitute the fine structure constant
α with the strong force coupling constant αs. Therefore:

N ∝

(αs

α

)3/2
(

α

αG

)3/2

≃ 103
· 1054

≃ 1057 (12)

from which it follows immediately that:

Mmin ≃ 1033 g ≃ 1M⊙ (13)

Rmin ≃ 106 cm ≃ 10Km (14)

These values are those typical of Neutron Stars (henceforth referred to as NS), where the
strong force is much more important than the e.m. force when competing with gravity.

Degeneracy Pressure of Fermions

In a non-degenerate star like the Sun, the gravitational force is balanced by thermal
pressure and radiation pressure generated by an internal source of energy (the nuclear fusion).
In WD and NS there is (almost) no internal source of energy. So how is the gravity balanced
to avoid the collapse of the object ?
The gravitational force is balanced by the onset of degeneracy, which is a consequence of the
Pauli exclusion principle. In WD, the degeneracy pressure is provided by (mainly relativistic)
electrons, whereas in NS, the non-relativistic neutrons provide the degeneracy pressure.

Suppose now to have a fermion of momentum pF , which is confined in a box of volume
d3. A consequence of the Heisenberg uncertainty principle is that:

pf · d ≈ ~ (15)

If we take the non-relativistic Fermi energy, this can be written as:

ǫF =
p2

F

2m
≈

~

m · d2
(16)

Conclusion: For a given distance “d”, it is the lightest particle that has the largest
Fermi energy, and that contributes the most to the pressure.
This is why for example in WDs the electrons provide most of the pressure, whereas the other
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particles have basically no effect on the pressure. But then why are NS supported by the
degeneracy pressure of neutrons ?
This is because NS are much more compact than WDs, and therefore the electrically neutral
neutrons get much more closely packed than the electrons in a WD, and therefore their pres-
sure overcomes by several orders of magnitude the electron degeneracy pressure.

Fermi-Dirac Distribution

In this section we will derive the Fermi-Dirac distribution (FD distribution), essential to
understand the behaviour of degenerate matter as we find it in white dwarfs or neutron stars.
At a fundamental level, all particles obey the law of quantum mechanics. When the number
of (non-relativistic) fermions is N , the state of the system and its evolution in time is given
by N Schroedinger equations (or Dirac equations in case of relativistic fermions). However,
when the number N is very large, the description of particles with wave functions becomes
unpractical and one introduces a so-called distribution function f(x, p, t). Here t is time, x
and p are the 3D positions and momenta of the particles. The distribution function f(x, v, t)
gives the particle number density in a 6D space (called the “phase space”, i.e., the space
of coordinate x and momentum p) and describes also the evolution in time of the system.
In other words, if you have a very large number of particles (like for example those in a
white dwarf), you do not follow the evolution of each single particle, but you define how
many particles you find with a specific position and momentum. This quantity is given by
f(x, v, t).

If your system is an ideal gas (i.e., no interactions between particles) at equilibrium, the
distribution function does not depend on time. For fermions (indistinguishable particles),
this distribution function, called Fermi-Dirac distribution, has the form:

f(E) =
1

1 + exp(α + Eiβ)
(17)

(note that E is related to the momentum p via the relativistic relation E =
√

p2c2 + m2c4).
Here α and β are parameters related with the temperature and with the Fermi energy of
the particles in the system (see the Syllabus for the correct definition of this energy):

α = −
EF

kBT
(18)

β =
1

kBT
(19)

Strictly speaking, the proportionality of α with the Fermi energy that appears above is correct
ONLY when the temperature T of the system is zero. When T > 0 the Fermi energy has to
be substituted with the chemical potential defined as:

µ =
∂ǫ

∂ n
(20)

where ǫ is the energy density of fermions (including rest mass energy) and n is the number
density of fermions.When T = 0 it is immediately clear then why the chemical potential is
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identical to the Fermi energy: to introduce a new particle in the system the particle must
have at least an energy equal to the Fermi energy. However, even if WDs and NS are very hot
objects (young NSs can reach temperatures of ∼ 109K), the Fermi energy of their particles
is always EF ≫ kT , which means that the thermal energy is negligible when compared to
the Fermi energy and therefore the system behaves as if it is a cold object close to absolute
zero temperature. This justifies the presence of EF in the FD distribution.

How do we derive this distribution function ? We need to make three simple hypotheses:

1. Fermions of the same type (e.g., electrons) are indistinguishable
2. Fermions obey the Pauli exclusion principle
3. the number of particles N and the total energy of the system ET are fixed and all the
many possible arrangements for the particles within the allowed state are equiprobable

Definition: f(E) is the probability that a state at energy level E is occupied

Since f(E) is a probability that a state is occupied, we can start with a simple example.
Let’s assume that we have two balls of different colours (e.g., (R)ed and (Y)ellow) and two
empty boxes. Let’s assume that the probability of finding a ball in a box is uniform (hypo-
thesis 3). The possible combinations of the balls in the two boxes are 4:
1. R+Y in the 1st box and the 2nd empty
2. 1st box empty and R+Y in the 2nd box
3. 1st box Y and 2nd box R
4. 1st box R and 2nd box Y

Now, let’s assume our two balls have the same colour (hypothesis 1: fermions are indi-
stinguishable): the total number of possible combinations is 3:
1. R+R in the 1st box, 2nd box empty
2. 1st box empty, R+R in the 2nd box
3. 1st box R, 2nd box R

Now, let’s add the hypothesis 2 (Pauli exclusion principle: maximum one ball in each box):
the total number of combinations is 1.
One can demonstrate that if we have a number Mi of boxes, and Ni of particles, the number
of ways these particles can be distributed in the boxes under the hypotheses 1, 2 and 3 is:

Wi =
Mi!

Ni!(Mi − Ni)!
(21)

for each energy level Ei.
Think at each box Mi as sub-levels of the energy Ei. For example, since fermions obey the
Pauli principle, then each energy level has two sub-levels, one for a spin up fermion of energy
Ei, and one for the spin down with the same energy.
Given i = 1, 2..., S energy levels, the total probability is:

W = Πi Wi (22)

From basic thermodynamics, we now that at thermal equilibrium the entropy is maximized
and it is related to the probability W via:

S = kB ln(W ) (23)
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It can be shown (for example by using the Lagrange multipliers method) that when S is
maximized we have:

Ni

Mi
= f(E) =

1

1 + exp(α + Eiβ)
(24)

which is our Fermi-Dirac distribution for an ideal gas of fermions at thermal equilibrium.
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Lecture Notes 2

1 Stability of an Equilibrium Configuration

Solutions to the TOV equations correspond to stellar configurations that are in hydrostatic
equilibrium. However, equilibrium does not assure stability. Equilibrium configura-
tions may correspond either to a maximum or to a minimum in the energy with respect to
radial compression or dilation. For a certain range of baryon number N that compose a star,
there are at least two equilibrium solutions, one at higher density and energy than the other.
How to determine therefore whether an equilibrium configuration is stable ?

For a given equation of state, there is a unique relationship between the stellar mass and
the central energy density ǫ(0) (or, equivalently, the central density since ǫ = ρ · c2), because
the TOV equation is of first order. Thus, for each possible EoS, there is a unique sequence of
stars parametrized by the central density or, equivalently, the central pressure. For a broad
range of central densities the solution of the TOV equations gives a well established unique
mass-to-density relation (see Figure 1).

Figura 1: Mass of a fluid configuration as a function of central energy density (i.e., central
density when c = 1). The solid lines show stable configurations, whereas dashed lines are
unstable. The nuclear density is identified by the symbol ǫ0. White dwarfs and neutron stars
(henceforth referred to as WD and NS) are found for a certain EoS by integrating the TOV
equations. The sequence labeled with “Strange” refer to a different EoS in which nucleons
(i.e., protons and neutrons) are broken into quarks up and down and converted into strange
quarks. Strange stars are an hypothetical class of compact objects, whose confirmation still
needs observational validation.

WDs are the lowest density sequence of compact stable stars1. Their central densities
range from about 5×105 g cm−3 to 9×109 g cm−3 (for comparison, the Earth average density

1At densities below WDs there is a long region of instability until the region populated by cold stable

bodies like brown dwarfs and planets
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is about 5 g cm−3). Stable WD that appear in Figure 1 are supported against gravitational
collapse by the electron degeneracy pressure. However, with increasing WD mass, a point is
reached in the equilibrium sequence where electrons are captured by protons via inverse β−

decay. This situation is more energetically favourable for high central densities. However,
since electrons are captured, the degeneracy pressure falls off and gravity cannot be balanced
anymore. This determines the unstable region (dashed line in Figure 1).

Stars in the unstable region between WDs and NS are subject to vibrational modes that
will either cause their disassembly or else their collapse to NS. Indeed some NS are believed to
have been formed by accretion induced collapse of a WD. In this process matter is transferred
from a normal star to a WD until the WD mass enters the instability region.

The Fermi pressure of degenerate neutrons reestablishes stability against collapse for the
lightest NS. Form more massive stars with higher densities, the repulsion of the nuclear fore
at short range adds additional resistance to compression. NS have central densities in a range
5-10 times higher than the nuclear density (ρ0 ∼ 2.5×1014 g cm−3). A similar situation then
happens when moving along the sequence of stable NS configurations. At very high densities
NS become unstable, and they collapse into black holes. However, recent calculations have
shown that there might exist a third family of stable solutions called “strange stars” in which
normal matter is converted into “strange matter” (i.e., strange quarks). Although fascinat-
ing, we will not consider this speculative hypothesis here any further.

2 Necessary condition for stability

It is possible to prove that along the sequence of equilibrium configurations of the TOV
equations, perfect fluid2 stars can pass from stability to instability with respect to any radial
mode of oscillation only at a value of the central density at which the equilibrium mass is
stationary :

∂M(ǫc)

∂ǫc
= 0 (1)

This is the key result in the discussion of stability. We will now give an heuristic proof of
Eq. 1 which at the same time will provide a necessary but not sufficient condition for stability
of stars along the sequence of equilibrium configurations. Refer to Figure 2 for a depiction
of a sequence of stars in the vicinity of a maximum of the curve describing equilibrium
configurations.

The figure above shows typical central densities and masses of a neutron star. Suppose
an equilibrium solution S is perturbed so that the central (energy) density ǫc is increased.
The star is displaced to C (i.e., it is compressed). The equilibrium star with this new central
density lies in mass at C∗. The star at C therefore has a deficit of mass with respect
to the equilibrium configuration, a deficit such that gravity under-balances the increased
central pressure corresponding to the increased density at C, as compared to the equilibrium
configuration of the star of this mass that lies at S. The gravitational force acting on the
matter of the star will therefore act to return it towards S. A similar argument shows that,
if the star at S undergoes a perturbation that decreases its central density, the force acting

2a fluid is perfect if it can be completely characterized by its rest frame energy density and pressure
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Figura 2: Schematic TOV solution in a region of increasing and decreasing mass as a function
of central density. Hydrostatic equilibrium is stable along positive slopes of the curve until
the mass limit is reached.
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on the matter of the star will act to return it to S. Going through a similar analysis of the
star U on the decreasing curve of M vs. ǫc, we arrive at the straightforward conclusion that,
if U is either compressed or decompressed by a radial perturbation, the force acting on the
perturbed star will act to drive it further from U , that is to say, equilibrium configurations
must satisfy:

∂M(ǫc)

∂ǫc
> 0 (2)

This is the necessary but not sufficient condition to have stability of an equilibrium
configuration. So we have proved that the passage from stability to instability occur only at
the turning points defined by Eq. 1. If we now plot the mass of an equilibrium configuration
vs. the number of baryons N (see Figure 3), then the number of baryons reaches its turning
point at the maximum mass star, as prover above, and that stars with central density higher
than that of the limiting mass star have higher mass than those of the same N on the lower
branch.

Figura 3: Mass of a fluid configuration as a function of baryon number N. Note that the
x-axis is in Log scale. Central density increases from lower N up to the dot. The upper curve
represents unstable fluid configurations, the dot the maximum mass of a stable equilibrium
configuration and the lower curve stable fluid configurations.

We now can apply the necessary condition for stability to equilibrium configuration con-
structed with a polytropic EoS (i.e., P = KρΓ, with K=constant). We saw in the previous
lectures that the mass of a polytrope with n = 3 (i.e., relativistic case) is related with the
central density via:

M ∝ ǫ(3Γ−4)/2
c (3)
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which means that by using Eq. 1 we obtain the necessary condition for a n=3 polytrope:
Γ > 4/3.

3 Sufficient condition for stability

We have now to determine whether an fluid configuration is stable against perturbations
about the equilibrium. In other words we need to verify whether a fluid configuration (a
WD or a NS) is not only in hydrostatic equilibrium, but it is also stable against radial
oscillations. WDs and NS, like normal stars, can vibrate like most objects if perturbed. The
vibrations may grow and destroy the object or be damped exponentially until equilibrium
is restored. To determine which, we need to find the eigenfrequencies of the normal radial
modes of vibration. The reason we use normal modes is because any type of vibration can be
analyzed in terms of the normal modes. We start with the general relativistic expression of
a spherically symmetric metric and we impose the condition that the perturbed star moves
adiabatically (i.e., there are no energy losses associated with the compression/decompression
process during the oscillation). Let’s define the amplitude of the normal mode “n” of vibration
with the function un(r). The perturbation of the star at a radius r at time t can then be
defined with the function:

δ r(r, t) = eφun(r)
eiωnt

r2
(4)

where ωn are the star’s oscillatory eigenfrequencies we want to find for each value of the central
density, that is, for each equilibrium configuration of the stellar sequence under discussion.
The fundamental mode corresponds to n = 0, which is also called node-less mode (see for
example Figure 4). The equation that describes the nth normal mode is the well known
Sturm-Liouville eigenvalue equation:

d

dr

(

Π
dun

dr

)

+
(

Q + ω2
nW

)

un = 0 (5)

where the functions Π, Q and W are related with the spherically symmetric metric and
with the adiabatic index Γ = d ln p

d ln ρ . We will not explicitly solve this equation here, but the
interested reader can find a more detailed explanation of the problem in Ch. 6 of Shapiro
& Teukolsky. What we need to know is just that this equation can be solved with suitable
boundary conditions and gives the set of eigenfrequencies that we are looking for. The fre-
quency spectrum has the form: ω2

0 < ω2
1 < ω2

2 < .... If any of these is negative for a particular
star, the frequency is purely imaginary and therefore any perturbation of the star will grow
exponentially in amplitude of oscillation as e|ω|t. Such stars are unstable. As a consequence
of the ordering of the eigenfrequencies and the fact that one mode of oscillation changes in
stability at every stationary point (i.e., Eq. 1), we may infer the following. If the fundamental
mode (n = 0) becomes unstable at the maximum neutron star mass, and it does, then at the
next minimum in the sequence, either stability is restored to the fundamental mode or the
next mode (n = 1) becomes unstable, and so on.
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Figura 4: The first four normal modes of vibration of a string fixed at each end. The solid
and dashed lines indicate the positions of the string at opposite phase positions in the cycle.
From top to bottom: normal mode with n=0,1,2,3. Note that for a string the normal mode
n=0 has two nodes (i.e., two stationary points) that correspond to the boundaries of the
string. In a radial mode in the interior of a star instead there are no nodes for n=0.
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3.1 Stability of the fundamental radial mode

As discussed earlier, we are primarily interested in the stability of the fundamental radial
mode, which has no nodes in the interior of the star. Now the eigenfunction at a critical point
of the M-ρc curve is simply the Lagrangian displacement δ r(r, t) that carries an equilibrium
configuration on the low-density side of the critical point into an equilibrium configuration
on the high-density side. In such a motion, ρc, increases and so δ r is negative near the center
of the star. Since there are no nodes in the fundamental radial mode, δ r is also negative near
the surface. Thus R decreases with increasing ρc, at a critical point where the fundamental
mode changes stability. (More generally, dR/dρc < 0 for the change in stability of a mode
with an even number of nodes, dR/dρc > 0 for an odd mode.) A schematic diagram of M vs.
ρc, with multiple critical points is shown in Figure 5 and 6. At low density (large radius),
all modes are stable. The first critical point that is reached is A, the maximum white dwarf
mass. Since R is decreasing with increasing ρc, an even mode is changing stability. Since
ω2

0 < ω2
1 < ω2

2 < ... , and since ω2
0 > 0 for low density, the only possibility is that ω2

0 becomes
negative. At B, an even mode is changing stability (dR/dρc < 0). It cannot be that ω2

2 is
becoming negative, because ω2

1 is still positive. Thus ω2
0 must be turning positive again: B

corresponds to the minimum neutron star mass. The critical point C is analogous to A and
ω2

0 becomes negative again; it corresponds to the maximum neutron star mass. At D, an
odd mode changes stability. The only possibility is that ω2

1 becomes negative. At E, an even
mode changes stability. It is impossible for ω2

0 to become positive while ω2
1 remains negative,

so it must be that ω2
2 becomes negative.

Note that the criterion dM/dρc > 0 (< 0) for identifying stability (instability) has limited
applicability: thus, the range D-E is unstable, even thuogh dM/dρc > 0. For typical cold
equations of state, however, the lowest density at which dM/dρc = 0 and d2M/dρ2

c < 0 corre-
sponds to the maximum mass and density of a stable white dwarf (e.g., point A in Figure 5).
The next point at which dM/dρc = 0 and d2M/dρ2

c < 0 gives the maximum mass and density
of a stable neutron star (e.g., point C in Figure 5 and 6).

Figura 5: Schematic diagram showing the turning points in the mass vs. central density
diagram for equilibrium configurations of cold matter (cf. Shapiro &Teukolsky, pp. 150, Fig.
6.2)
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Figura 6: Schematic diagram showing the turning points in the mass vs. radius diagram for
equilibrium configurations of cold matter (cf. Shapiro &Teukolsky, pp. 150, Fig. 6.3)

4 Physical Significance of a M-R relation for Neutron Stars

Once a sequence of stable equilibrium configurations has been established for a certain EoS,
it is possible to build a mass-radius relationship for neutron stars. In Figure 7 several M-R
relations are shown for NS with different EoS. The M-R relation is just analogous to the
mass-density relation plotted in Figure 1. However, while the central density of a NS is not
an observable, the mass and radius are measurable (at least in principle), and therefore with
a suitable measurement of these quantities it may be possible to identify the EoS of ultra-
dense matter. Once the EoS is identified, we can understand how particles and fundamental
forces behave at densities not reproducible in Earth-based labs. However, while measuring
the mass of a neutron star is possible in some situations, the measurement of the NS radius is
a formidable challenge and no reliable measurements exist so far. The determination of the
mass and radius for the same NS and therefore the identification of the EoS of ultra-dense
matter is one of the most exciting areas of compact object astrophysics.
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Figura 7: Mass-Radius relation for neutron stars with different equations of state. The
gray areas are regions that can be excluded because of GR effects, pressure limit, causality
and rotational centrifugal instability of a NS. The horizontal colored bands refer to precise
radio measurements done on radio pulsars that allow a precise determination of the neutron
star mass. The EoS labeled with “SQM” refer to “Strange Quark Matter” models, whereas
all other EoS are calculated with different assumptions on the fundamental interactions of
nucleons and on the particle composition of the inner core. By using the maximum mass
observed for the pulsar J1614-2230 it is possible to immediately rule out equations of state
like SQM1 (with pure strange quark matter), GS1 (with a Bose-Einstein kaon condensate)
and many others. From P. B. Demorest,T. Pennucci, S. M. Ransom M. S. E. Roberts & J.
W. T. Hessels 2010, Nature, Vol. 467, pp. 1081-1083
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Lecture Notes 3

Equation of state above Neutron Drip

1 Neutron Drip Point

1.1 Structure of the inner crust

With increasing density, the ground-state value of Z/A decreases and neutrons become less
and less bound. Let us define the “net neutron chemical potential” of a neutron in a nucleus

µ′
n ≡ µn − mnc2 =

(

∂E{A, Z}

∂N

)

Z

− mnc2 . (1)

As long as µ′
n < 0, all neutrons are bound within nuclei. The neutron drip point corresponds

to µ′
n = 0; beyond this point neutrons “drip out of nuclei”, i.e. they begin to fill states in

the continuous part of the energy spectrum. We can roughly localize the neutron drip point
using the approximate mass formula for E′{A, Z} = E{A, Z} − Amc2, where, for simplicity,
we neglect the neutron-proton mass difference, putting mn ≈ mp ≈ m = 939 MeV/c2.
Neglecting surface and Coulomb terms, we have

E′{A, Z} ≈ A
(

Evol + Esymδ2
)

, (2)

where δ ≡ (N −Z)/A, and Evol and Esym are nuclear volume and symmetry energies, respec-
tively. Experimentally, Evol ≃ −16 MeV and Esym ≃ 32 MeV. Using Equation (2), we can
easily show that the value of δ at which µ′

n = 0 is

δND =
√

1 − Evol/Esym − 1. (3)

Using experimental values of Evol and Esym, we find δND = 0.225.
Neglecting neutron-proton mass difference, the beta equilibrium condition

p + e → n + νe (4)

reads
µe = µn − µp ≈ 4Esymδ . (5)

At the density under consideration, electrons are ultra-relativistic, so that the chemical po-
tential of the electrons µe ≃ 5.16 (ρ9Z/A)1/3 MeV, where ρ9 = ρ/109 g cm−3. It is now easy
to show that the neutron drip density is roughly ρND ≈ 2 × 1011 g cm−3, which is about
half of the value obtained in complete calculations (cf. Sections 3.6 and 3.7 of Shapiro &
Teukolsky). For ρ > ρND ≈ 4 × 1011 g cm−3 a fraction of neutrons thus forms a gas outside
the nuclei.

The inner crust of a neutron star is a unique system, which is not accessible in the lab-
oratory due to the presence of this neutron gas. Sometimes the “nuclei” in the inner crust
are referred to as “clusters” in order to emphasize these peculiarities. The description of
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the crust beyond neutron drip therefore relies on theoretical models only. Many-body cal-
culations starting from the realistic nucleon-nucleon interaction are out of reach at present
due to the presence of spatial inhomogeneities of nuclear matter. Even in the simpler case of
homogeneous nuclear matter, these calculations are complicated by the fact that nucleons are
strongly interacting via two-body, as well as three-body, forces, which contain about twenty
different operators. As a result, the inner crust of a neutron star has been studied with phe-
nomenological models. Most of the calculations carried out in the inner crust rely on purely
classical (compressible liquid drop) and semi-classical models (Thomas–Fermi approximation
and its extensions). The state-of-the-art calculations performed so far are based on self-
consistent mean field methods, which have been very successful in predicting the properties
of heavy laboratory nuclei. Today we can say that our knowledge of the EoS in the inner crust
of neutron stars is known relatively well. The outer core instead, defined as the region where
ρnucl < ρ < 2ρnucl, has a less understood EoS, which however can still be reasonably described
with an n-p-e gas (see Shapiro & Teukolsky, Section 2.5) with appropriate corrections for the
nucleon-nucleon interaction (remember that the n-p-e gas we have seen so far was an ideal

gas, i.e., non-interacting). When the density crosses the threshold of 2ρnucl, the EoS becomes
extremely uncertain, with many different possibilities that depend on the poorly understood
nucleon-nucleon interaction. Degenerate nucleons become relativistic (pN

F > mNc2) with new
particles species appearing. The new particles might be light mesons (like pions π−, that is
a bound states of down and anti-up quarks), hyperons (Λ, Σ0,±) or even a deconfined state
of free quarks1. Our knowledge of the EoS of dense matter above the neutron drip point has
to be considered more and more poorly understood as the density increases, with the EoS
becoming basically completely uncertain when ρ > 2ρnucl. This matter is sometimes referred
to as ultra-dense matter.

1.2 Nucleon-Nucleon interaction

When the density of matter reaches about the nuclear density ρnucl ≈ 2.8× 1014 g cm−3, the
nucleons start to “touch” each other. In this case the nucleon-nucleon interaction plays a
dominant role in determining the EoS. However, present day nucleon-nucleon interaction is
still poorly understood, and this is reflected on the EoS. In this section we will describe a
rough sketch of the main properties that the nuclear force has. First of all, the nuclear force
is not one of the four fundamental forces, and it exists as a consequence of the strong force
that acts on quarks that compose nucleons. Nuclear forces are sometimes called “residual
strong forces”, because they emerge as a residual strong interaction between different quarks
in different nucleons (see Fig. 1).

The force that holds protons and neutrons together is extremely strong. It has to be
strong to overcome the electric repulsion between the positively charged protons. It is also
of very short range, acting only when two particles are within 1 or 2 fm (1 fm = 10−15m) of
each other.

In Fig. 2 an empirical description of the nucleon-nucleon potential is shown.

• There is an extremely strong short-range repulsion that pushes protons and neutrons
apart before they can get close enough to touch. (This is shown in light blue.) This
repulsion can be understood to arise because the quarks in individual nucleons are
forbidden to be in the same area by the Pauli exclusion principle.

1quarks can exist as free particles only when the densities reach the extreme values at the center of a NS.

In this case asymptotic freedom guarantees that the strong interaction is sufficiently weak to allow quarks in

nucleons to behave as “free” particles
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Figura 1: The residual strong force can be understood as a residual strong interaction between
quarks in different nucleons. In the picture neutrons (up+down+down quarks) and protons
(up+up+down quarks) are bound together via the residual interaction of up and down quarks.

• There is a medium-range attraction (pulling the neutrons and protons together) that is
strongest for separations of about 1 fm. (This is shown in light green). This attraction
can be understood to arise from the exchange of quarks between the nucleons.

• At long ranges (separation > 2 − 3 fm) nuclear forces become ineffective.

The density of nuclei is limited by the short range repulsion. The maximum size of nuclei
is limited by the fact that the attractive force dies away extremely quickly (exponentially)
when nucleons are more than a few fm apart.

The real nuclear force is however more complex than suggested above. For example, if
a proton and a neutron form a bound state (deuterium, or 2

1H), why can’t two neutrons
form a bound state? If the nuclear force were a simple central force (like gravity) that only
depended on distance like shown above, we would expect the di-neutron to be stable just like
2
1H because neither has any Coulomb repulsion to deal with. (The two protons that would
make up 2

2He would be pushed apart because like charges repel.)
The answer is that the measured properties of the nucleon-nucleon interaction depend on

many things, including the kind of particle and spin orientation, and is not strongly attractive
under all possible situations. We will not go into the details of realistic nucleon-nucleon
interaction here, but we will use only the rough sketch outlined above.

2 Nuclear properties of Ultra-dense Matter

We have seen the semi-empirical mass formula (Shapiro & Teukolsky, Section 2.6) which, in
one of its simplest formulation, can be written as:

Eb = [a1A − a2A
2/3 − a3Z

2A1/3 − a4(A − 2Z)2A−1]c2 (6)

According to this formula, when ignoring the Coulomb and the surface term, the binding
energy of nuclei decreases (i.e., it becomes stronger) in direct proportion to the atomic mass
number A. We have already discussed in Lecture 3 that when the nucleon-nucleon interaction
between A nucleons is considered, the “volume” term in the semi-empirical mass formula is
proportional to A instead of A(A − 1 ), as one would expect if A nucleons interact with the
remaining (A-1). The heuristic explanation we gave back then was that the nucleons interact
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Figura 2: Empirical description of nucleon-nucleon potential. At very short distances (d ∼<
0.1 fm) the nucleons feel a repulsive core, whereas at longer distances the potential is negative
and generates a weakly attractive force (the nuclear force)

only with their closest neighbours. This property of nuclear matter is called “saturation”.
Nuclear matter represents saturated systems. The reason for this is in the short range of
nuclear force, its strong repulsion at short distances and the Pauli principle. Saturation
means that, as more nucleons are added to nuclei, the density of the central region remains
constant. The Saturation occurs in nuclei as well as in assemblies of free nucleons at sufficient
densities. The force between nucleons must be attractive for a small number of nucleons, but
become repulsive for a larger number. Chemical forces show saturation: two hydrogen atoms
combine to form a hydrogen molecule, but a third atom cannot be bound. In the hydrogen
molecule the two electrons can occupy the same orbital with opposite spins, but a third
electron cannot because of the Pauli principle. A purely attractive nuclear potential leads
to nuclear collapse as A increases, while the presence of a repulsive core helps bring about
saturation. Nuclear saturation corresponds to a baryon density ns = 0.16 ± 0.01 fm−3. The
central densities of neutron stars may even range up to (3–10) ns. At densities around ns

and below, matter may be regarded as a mixture of neutrons, protons, electrons, positrons,
neutrinos and anti-neutrinos, and photons. At higher densities, additional constituents may
be present, such as muons, hyperons, kaons, pions and quarks. Up to now, there is no
consensus on the composition of ultra-dense matter.

Whatever form is chosen for the nucleon-nucleon interaction in calculating the EoS of
ultra-dense matter, a key experimental constraint is that the chosen potential reproduce the
observed properties of nuclear matter at saturation. Four important parameters need to be
reproduced:

• The saturation density ns ≃ 0.16 ± 0.01 fm−3.
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• The energy WV of symmetric nuclear matter.

• The compressibility K of nuclear matter.

• The volume symmetry coefficient SV .

The energy and compressibility of nuclear matter are defined in terms of the quantity W (k, x)
(see Shapiro & Teukolsky, Section 8.2) for the bulk energy of nuclear matter per nucleon.
Symmetric nuclear matter (i.e., Z=A/2) has x = 1

2
. In the vicinity of the saturation density,

we can write:

W

(

k,
1

2

)

= −WV +
1

2
K

(

1 −
k

k0

)2

(7)

The most recent nuclear experiments provide the values:

WV = 16 ± 1.0 MeV (8)

K = k2
∂2W

(

k, 1
2

)

∂ k2

∣

∣

∣

∣

∣

k=k0

≈ 231 ± 5 MeV (9)

Here k0 = 1.33 fm−3 follows from the value of the saturation density ns and the nucleon
number density n = 2k3

3π2 (see also Eq. (8.2.27) on Shapiro & Teukolsky). An interpretation of
K is that it gives the associated increase of the energy per nucleon of the symmetric nuclear
matter due to a small compression of rarefaction.
The volume symmetry coefficient SV measures the curvature of the bulk nuclear energy
W (k, x) (see also §8.2 on Shapiro & Teukosly) due to changes in x:

SV =
1

8

∂2 W (k0, x)

∂ x2

∣

∣

∣

∣

x=1/2

= 32 ± 6 MeV (10)

Notice how the uncertainty on SV is rather large, which is a consequence of the ambiguity in
separating the bulk and surface symmetry term in binding energies.

Accordingly, we can write for k near k0 and x near 1
2
:

W (k, x) = −WV +
1

2
K

(

1 −
k

k0

)2

+ 4SV

(

x −
1

2

)2

(11)

3 Minimum Neutron Star Mass

If you look at the M-R or M-ρc relation for equilibrium configurations of cold matter (e.g.,
Figure 6.2 and 6.3 on the Shapiro & Teukolsky, or see Lecture Notes 2), you might have no-
ticed that the white dwarf sequence has no minimum mass, whereas there is a clear minimum
for neutron stars.

To understand this minimum, let’s start by calculating the gravitational energy of a
neutron star. As an example, we can roughly estimate the gravitational energy for a uniform
density neutron star with a nominal two solar mass and a 10 km radius.

Using Eq. (5.7.8) from the Shapiro & Teukolsky:

M =

∫ R

0

4π r2ρ dr (12)
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we find:

EG ≈

∫ R

0

M(r)dM(r)

r
=

3

5

M2

R
≈ 7 × 1053 erg = 4 × 1059 MeV (13)

Thus the gravitational energy is a significant fraction of the total gravitational mass of the
star, namely, 18% for a two solar mass star. To find the gravitational energy per nucleon in
the star, refer above to the estimated number of nucleons A to find 157 MeV per nucleon.
By contrast, the binding of a nucleon at saturation is about 16 MeV (see Eq. 8) and 8 MeV
in a finite nucleus. The classical estimate of the gravitational energy is not the binding
energy of the star; it does not take account of the compression energy resisting the assembly
of nucleons in a star arising from the Fermi pressure and the short-range repulsive nuclear
force. Nonetheless, the binding energy per nucleon in a limiting mass star is about 100
MeV per nucleon. Thus, the weakest force binds nucleons in a neutron star ten times more
strongly than the strong force binds them in nuclei. How can this be so? The answer lies in
their ranges. The nuclear force acts only on neighbors that lie within its range, typically the
several next nearest neighbors, but each particle in the star feels the gravitational force of all
others. From the absolute limit on M/R of a stable star derived in Problem Set 6

(

2M
R < 8

9

)

,
we can find an upper limit on the gravitational energy of a star relative to its mass. It is
(3/5)(M/R) < 4/15 or 27%.

We can now compute the mass of the equivalent numbers of baryons dispersed at rest at
infinity.

MB = A mB (14)

where the suffix “B” refers to the baryon species present in the neutron star, and A is the
baryon number. The mass MB is sometimes called the baryon mass of the star. In Fig. 3 we
compare the gravitational masses with the baryon masses. By reading the mass difference
from the graph, one can find that the binding per neutron is about 100 MeV. This compares
with our previous estimate of 160 MeV, which actually is the classical gravitational energy.
The latter refers only to the gravitational attraction and does not include the work required
to overcome the Fermi pressure and the resistance to compression of high-density matter.
The difference M − MB, which is the binding energy of the neutron star, contains all such
effects and is the net energy gained by assembling the A nucleons from infinity to form an
equilibrium neutron star. The binding energy is the energy released when the core of an
evolved star of ∼ 8− 10 or more solar masses collapses. About one percent actually appears
as the kinetic energy of the supernova explosion in which the neutron star is formed. Ninety-
nine percent is carried off by neutrinos in the first few seconds following birth of the neutron
star, and a small fraction of one percent appears as light in the supernova remnant. The
baryon mass is usually larger than the gravitational mass and always larger for configurations
near the limiting mass. However, less massive neutron stars have a larger gravitational mass
than that of all the individual baryons dispersed to infinity. This fact is shown in Fig. 4
where the binding energy per nucleon, B/A = (MB − M)/A, is plotted. These stars have
even higher gravitational mass as compared to the mass of the equivalent baryon number
disassembled in the form of iron nuclei at infinity. Nevertheless, even in the case in which a
star is not bound with respect to a simultaneous removal of all constituents to infinity, it is
bound with respect to removal of single nucleons (or groups of nucleons, but not all nucleons).
The reason for this is the long-range attraction of all the remaining nucleons in the star. Such
neutron stars are metastable with an essentially infinite barrier for disintegration. It may
be relevant to observe that there may exist no creation mechanism for low-mass neutron
stars having small or negative binding, even though they are stable in the sense discussed
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Figura 3: Gravitational Mass (M) and Baryon Mass (MB) vs. central density. The difference
MB − M provides the binding energy of the star

Figura 4: Binding energy per baryon of a neutron star sequence. The dashed line represents
the unstable configurations with central densities higher than that of the limiting mass star.
Note the negative binding for stars with M < 0.2 M⊙
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above. They must evade collapse to a black hole. However, the neutrinos carry almost all
the binding energy, and because of their weak interaction with nucleons, transmit very little
to the in-falling material of the defunct star. Thus a low binding energy may fail to eject the
ten or more solar masses of the original star, and there is no chance to do so at all if B/A is
negative. A large release of binding energy, only a small part of which can be transmitted to
the in-falling material because of the weak interaction of neutrinos that carry the energy, is
required to eject most of the progenitor star and evade the formation of a black hole. This
observation may account for the apparent absence of low-mass neutron stars (say less than
1M⊙).

Finally, we must observe that neutron stars with mass M → 0 cannot exist also for
another fundamental reason related with the instability due to neutron decay. We have seen
that the beta decay reaction:

n → p+ + e− + ν̄e (15)

is suppressed in neutron stars because the electron Fermi sea is completely filled. The neu-
trons (whose mean lifetime is ∼ 15 min) are therefore stabilized against beta decay in neu-
tron stars. However, when the density drops towards zero the electrons stop being degenerate
and the beta decay reaction is unlocked. Neutrons start to decay and the neutron star is
quickly disrupted on a dynamical timescale (i.e., between a few ms to a few seconds). Mat-
ter experiences abrupt acceleration and disperses to infinity, releasing a copious amount of
anti-neutrinos.

4 Maximum Neutron Star Mass

The existence of Mmax can be explained using two kinds of physical arguments, related to
the behavior of ultra-dense cold matter and to General Relativity.

The ultra-dense cold matter argument was presented for the Newtonian case by
Landau in 1932. We have seen how he was able to determine the Chandrasekhar limit with
very good approximation simply using the Fermi energy and the gravitational energy for
a number N of particles (see Shapiro & Teukolsky §3.4). When he used the electron mass
as the source of degeneracy pressure, Landau obtained a maximum mass and a radius for
white dwarfs very close to the results of Chandrasekhar when using a relativistic polytrope
(n=3). If you substitute the electron mass with the neutron mass, i.e., if you assume that
the degeneracy pressure is provided by free neutrons, then the maximum mass will be the
same as in the WD case, but the radius will scale down to a few km (i.e., the radius of a
neutron star). The great beauty of this argument was that the maximum mass of a neutron
star was not depending on any quantity other than fundamental constant of nature and on
the baryon mass that provides most of the neutron star mass (same identical argument was
true for WDs).

Beautiful by its simplicity and astonishing by the realistic value of Mmax, the Landau-type
derivation is based on two bold assumptions. First, one assumes that the matter becomes a
free Fermi gas with increasing density (i.e., interactions between matter constituents become
negligible). Second, one uses the Newtonian gravity and the baryon mass of the star. The
crucial effect of space-time curvature will be discussed in the end of the present section, while
now we focus on the behavior of the EoS at higher densities.

For a certain model of the neutron-neutron interaction involving nucleons whose details
we will skip here, it is possible to demonstrate that the interaction contribution dominates
over the kinetic energy at high densities, so that:
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ǫ ∝ n2
b ∝

N2

R6
(16)

where nb is the baryon number density, N is the baryon number and R is the radius where the
baryons are enclosed. This is different from the value that Landau obtained with an internal

energy for the body corresponding to Eint = N · EF ≃ ~c N4/3

R (note that in Eq. 3.4.1 of the
Shapiro & Teukolsky, EF is the Fermi energy per particle). The total gravitational energy
(Newtonian case) is: N · EG = −GN2m2

B/R Therefore it is always possible to find a value N
that minimizes the total energy Eint +N · EG and therefore there is no upper bound on M or
N for Newtonian stars. However, we know that at sufficiently high densities quarks become
nearly deconfined (albeit we do not know whether the required densities are really reached
in the inner core of neutron stars). When and if this happens, the internal energy of the
star cannot be calculated anymore as above, because that depends on the nucleon-nucleon
interaction, which is just not working for deconfined quarks. It is possible to demonstrate
that for free quarks Eint ∝ N4/3/R, i.e., this is exactly the same scaling as in the Landau
argument.

The whole point above has been given just to demonstrate the following: until we do

not know what is the EoS of ultra-dense matter, i.e., until we understand which fundamental

interactions are playing in the inner core of neutron stars, the maximum mass of a neutron

star will depend on the assumed fundamental interaction that dominates in the inner core.

Moreover, irrespectively of the EoS, the upper bound on M is a consequence of a General

Relativistic argument. If you look at the TOV hydrostatic equilibrium equation, the
gravitational pull acting on a matter element of unit volume is:

GravitationalPull = −
Gmρ

r2

(

1 +
4π P

mr3

) (

1 +
P

ρ c2

)(

1 −
2Gm

2c2

)−1

(17)

This pull is given by a Newtonian-like term, i.e., −Gmρ/r2 multiplied by three relativistic
factors. With increasing M, all these factors amplify the pull compared to the Newtonian
case, as you can verify by noticing that all of them are always positive. This means that
there is a demand for higher pressure P to keep hydrostatic equilibrium. Mathematically,
the derivative dM/dPc decreases with growing M and makes stellar configurations less stable.

Let’s illustrate this property with an unphysical case of incompressible fluid of constant
density ρinc. The total gravitational mass is then M = (4π/3)ρincR

3, and the pressure
P (r) in the star is determined analytically (the interested reader can find the details of this
calculation in the book “Gravitation”, Misner, Thorne & Wheeler (1971), Box 23.2). The
central pressure Pc can be determined as a function of rs/R, where rs = GM/c2 is the
Schwarzschild radius of the star. As the mass increases, the pressure Pc and rs/R grow up.
In other words, both rs/R and M increase with increasing Pc. For Pc → ∞, the radius tends
to a finite value Rmax = 9

8
rs (cf. Exercise 5.5), and the mass tends so:

M inc
max =

4π

9

Rmaxc2

G
≈ 5.09

(

5 × 1014 g cm−3

ρinc

)1/2

(18)

This limit is the effect of General Relativity; there is no limit on the mass of the incompressible
fluid, the it should a fortiori exist for any EoS of dense matter with finite compressibility.
Calculations show that the numerical value of Mmax is mainly determined by the EoS at
ρ ∼> 2ρnucl, which is largely unknown.

9



Lecture Notes 4

1 Superconductivity

Superconductors are defined as materials with a definite phase transition and critical temper-
ature Tc below which the resistivity is zero, and who exhibit the Meissner effect. This latter
property will be explained in §1.2, and marks one of the fundamental differences between
perfect conductors and superconductors.

In superconductors the resistivity, ρ, becomes zero, and so the conductivity σ appears to
become infinite below Tc. To be consistent with Ohm’s law (~ǫ = ρ~j we must always have
zero electric field, ~ǫ = 0 at all points inside a superconductor. In this way the current, ~j, can
be finite. So we have current flow without electric field. Notice that the change from finite to
zero resistivity at the superconducting critical temperature Tc is very sudden. This represents
a thermodynamic phase transition from one state to another. As for other phase transitions,
such as from liquid to gas, the properties of the phases on either side of the transition can be
completely different. The change from one to the other occurs sharply at a fixed temperature
rather than being a smooth cross-over from one type of behaviour to another. Here the
two different phases are referred to as the normal state and the superconducting state. In
the normal state the resistivity and other properties behaves similarly to a normal metal,
while in the superconducting state many physical properties, including resistivity, are quite
different. In some cases, notably the high temperature superconductors, there is a small range
of temperatures where the resistance starts to decrease before becoming truly zero. This is
due to thermodynamic critical fluctuations associated with the phase transition. The precise
thermodynamic phase transition temperature Tc can be defined as the temperature where
the resistivity first becomes exactly zero. The key characteristic of the superconducting state
is that the resistivity is exactly zero:

ρ = 0 (1)

or the conductivity, σ, is infinite1

1.1 Perfect Conductor

The most convincing evidence that perfect conductors really have ρ = 0 but they are not
superconductors comes from the observation of persistent currents and the observation of the
Meissner effect (see next section). If we have a closed loop of perfectly conducting wire, such
as the ring shown in Fig. 1, then it is possible to set up a current, I, circulating in the loop.
Because there is no dissipation of energy due to finite resistance, the energy stored in the
magnetic field of the ring will remain constant and the current never decays. To see how this
persistent current can be set up, consider the flux of magnetic field through the centre of the
superconducting ring. The flux is defined by the surface integral

φ =

∫
~B · d~S (2)

1It is important to stress once more that that the zero resistivity is not a sufficient condition to be a

superconductor. Perfect conductors are not superconductors and still show ρ = 0.
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Figure 1: A persistent current can circulate in a ring of superconductor (in red). Since the
resistivity is zero, there is no dissipation and the ring can sustain the current forever, and
the energy stored in the magnetic field of the ring (blue lines) will remain constant in time.
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where d~S is a vector perpendicular to the plane of the ring. Its length dS, is an infinitesimal
element of the area enclosed by the ring. But, by using the Maxwell equation

∆× ~ǫ = −
∂ ~B

∂ t
(3)

and using Stokes’s theorem we can see that

−
dφ

dt
=

∮
~ǫ · d~r (4)

where the line integral is taken around the closed path around the inside of the ring. This
path can be taken to be just inside the superconductor, and so ~ǫ = 0 everywhere along the
path. Therefore

dφ

dt
= 0 (5)

and hence the magnetic flux through the ring stays constant as a function of time. We can
use this property to set up a persistent current in a perfect conductor. First we start with
the perfect conductor at a temperature above Tc, so that it is in its normal state, with a
non-zero resistance (normal conductor). Then apply an external magnetic field, ~Bext. This
passes easily through the normal conductor. Now cool the system to below Tc, so that the
resistance becomes zero and the conductor is now perfect. The flux in the ring is given by
φ =

∮
~Bext · d~S. But we know that the flux remains constant, no matter what. Even if we

turn off the source of external magnetic field, so that now ~Bext = 0, the flux must remain
constant. The only way the perfect conductor can keep φ constant is to generate its own
magnetic field ~B through the centre of the ring, which it must achieve by having a circulating
current, I, around the ring. The value of I will be exactly the one required to induce a
magnetic flux equal to φ inside the ring. Further, because φ is constant, the current I must
also be constant. We therefore have a set up circulating persistent current in our perfect
conducting ring. Furthermore if there were any electrical resistance at all in the ring there
would be energy dissipation and hence the current I would decay gradually over time.

1.2 The Meissner Effect

As we have said earlier, the fact the the resistivity is zero, ρ = 0, is a common property
between perfect conductors and superconductors. However, the latter cannot be defined
merely with the condition ρ = 0. The fundamental proof that superconductivity occurs
in a given material is the demonstration of the Meissner effect. This effect is the fact the a
superconductor expels a weak external magnetic field. First, consider the situation illustrated
in Fig. 2 in which a small spherical sample of material is held at temperature T and placed
in a small external magnetic field, Bext. Suppose initially we have the sample in its normal
state, T > Tc, and the external field is zero, as illustrated in the Figure. Imagine that we
first cool to a temperature below Tc while keeping the field zero. Then later as we gradually
turn on the external field the field inside the sample must remain zero. This is because, by
the Faraday’s law (Maxwell equation written above), combined with ~ǫ = 0 we must have

∂ ~B

∂ t
= 0 (6)

at all points inside the superconductor. Thus by applying the external field to the sample
after it is already superconducting we must arrive at the state where the magnetic field
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~B = 0 is zero everywhere inside the sample. But now consider doing things in the other
order. Suppose we take the sample above Tc and first turn on the external field, Bext. In
this case the magnetic field will easily penetrate into the sample, ~B = ~Bext, as shown in
Fig. 2. What happens then we now cool the sample? The Meissner effect is the observation
that upon cooling the system to below Tc the magnetic field is expelled. This fact cannot be
deduced from the simple fact of zero resistivity and so this is a new and separate physical
phenomenon associated with superconductors. There are several reasons why the existence
of the Meissner effect affecting a sample is taken as definitive proof of superconductivity. At
a practical level it is perhaps clearer to experimentally demonstrate the flux expulsion than
zero resistivity, because, for example, it is not necessary to attach any electrical leads to
the sample. A more fundamental reason is that the Meissner effect is a property of thermal
equilibrium, while resistivity is a non-equilibrium transport effect. In fact one can see in
Fig. 2 that we reach the same final state of the system whether we first cool and then apply
the field, or the other way around. Therefore the final state of the system does not depend on
the history of the sample, which is a necessary condition for thermal equilibrium. We shall
always define a superconductor as a system which exhibits the Meissner effect.

Figure 2: Panel a)-b): Perfect conductor. Panel c)-d): Superconductor

2 Pulsar Glitches

This section has to be considered an integration to §10.10 in Shapiro &Teukolsky. This is
necessary because the two-component model presented in S&T can be considered outdated
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in some aspects. Here we present a brief historical perspective on the evolution of pulsar
glitch models from the ’80s up to the present days (consider that Shapiro & Teukolsky has
been published in 1983, so it is not updated in the content of some sections, especially on the
observations). We will show that in the last decades many other pulsar glitches have been
observed both for Crab and Vela pulsars, but also for other pulsars not mentioned in the S&T.
New observations led to a reinterpretation of the two-component model, which however to
date remain a valid base to start studying pulsar glitches and hadron superfluidity in neutron
stars.

In 1981, the first real opposition to the two-component model appears, in two separate
papers. Firstly, Boynton (1981, The IAU, 279) obtained a power spectrum of timing fluctua-
tions from pulsar timing data (power spectra are obtained by squaring the Fourier amplitudes
of the time series Fourier transform. More details will be given in Lecture 10, on the Ob-
servational techniques). He showed that for the calculated values of Q and τ for the Crab
pulsar, according to the two-component model, there should be a prominent , characteristic,
two-component signature in the power spectrum. however, in his analysis, Boynton found
none. Instead, he found that the signature pointed towards rigid-body rotation. He then
went on to say that the two-component model works well for macroscopic glitches, but not
for minor perturbations, which give results resembling rigid-body behaviour.

The second objection came the same year from Downs 91981, ApJ 249, 687). In this
paper, he thoroughly analyzed twelve years of observational data for the Vela pulsar. He
mentioned that only 20% of each Vela period jump decayed exponentially towards the pre-
glitch spin-down rate, having recovery time of around one year. He also showed that the
recovery time τ is not the same from glitch to glitch for Vela, in contradiction with what
was proposed by Pines et al. (1974). Another important observation is that the values of Q
obtained in this analysis were much lower than expected, for large glitches (∆Ω/Ω ≃ 10−6.
These Q values were used to calculate neutron star masses which are roughly half those
obtained using more direct methods. As a result, Downs stated that the two-component
model is not dominant in case of large spin-up. He concluded that the interior structure of
the Vela pulsar is too complex to be explained by the simplistic two-component model.

Later that year, Alpar et al. (1091, ApJ 249, L29), commented on the merit of Downs’
conclusion that the Vela pulsar’s relaxation behaviour is too complex to be described by the
simplistic two-component model presented by Baym et al. (see S&T, §10.10). They used this
result as the basis for their model in which spin-ups are caused by a change of vorticity in the
superfluid component, and the post-glitch relaxation is caused by vortex creep mechanisms.
This newer model relies on the processes of vortex pinning and unpinning as the main drivers
of the glitch phenomenon. The main differences between this model and the two-component
model are as follows:

• The vortex unpinning model involves a much smaller fraction (a few percent) of the
neutron superfluid, i.e., the pinned portion of the superfluid, as compared to the entire
superfluid in the two-component model.

• The vortex unpinning model is a non-linear theory, in that the vortex creep rate (i.e.,
the rate at which vortices migrate radially outwards) depends exponentially on the size
of the glitch, as well as on the glitch-induced change in superfluid angular velocity.

• The vortex unpinning model produces relaxation timescales which are proportional
to the internal temperature of the star. As a result, analyzes of timing data using
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this model would enable the determination of the internal temperature, and hence an
estimate of the surface temperature of the star.

A few months after Alpar et al. first proposed the vortex unpinning model, is early 1982,
Downs produced a second detailed paper on pulsar timing analysis (Downs 1982, ApJ 257,
L67), this time for PSR 0525+21. Once again, twelve years of data were analyzed, and in this
period, two small glitches were observed. Downs contended that the original two-component
model was not a good fit to these glitches. The reason for this is that after the spin-up,
the period derivative Ṗ did not return to the pre-jump value, as is required by the model.
Instead, the post-glitch behaviour seemed to mimic that displayed by the Vela pulsar, as
discussed in Downs’ previous investigation.

The following year, in 1983, Demiansky & Prozynsky (1983, MNRAS 202, 437) published
their results on the 1975 Crab pulsar glitch. They too found a permanent change in Ṗ
after the glitch event, citing a change in the external torque on the star as the cause. This
further added to the evidence supporting the claim that the two component model is too
simplistic to describe the processes occurring during a glitch. Link et al. (1992, ApJ 390,
L21) proposed that this observed behaviour is a result of an increased external torque caused
by the rearrangement of the stellar magnetic field.

In 1985, Cordes and Downs (1985, ApJ Supplements 59, 343) aptly commented on the
then recent findings regarding the two-component model. They stated that the model was not
to be scrapped, but that a redefinition of the two components was required. They emphasized
the fact that the most successful mechanisms were those that involved a transfer of angular
momentum from the more rapidly rotating superfluid to the slower crust.

In 1987, the two0component model received some observational support from the analysis
of the 1986 glitch in the Crab pulsar, performed by Lyne & Pitchard (1987, MNRAS 229,
223). They found that the data for this glitch could be easily fitted using a simple exponential,
of the form of that obtained using the two-component model. They did, however, find that
the data are best fitted by two separate exponential. However, the two exponential factors
(τ1 = 2.5 ± 0.5 days and τ2 = 5.0 ± 0.5 days) are multiples of each other within the errors.
Hence, they could not conclude whether these do in fact represent two separate exponential,
or a single more complicated one. They went on to say that the two-component model still
represents an applicable model; one that can be best understood in terms of the vortex
unpinning model of Alpar et al. It is interesting to note that the magnitude of this glitch
is rather small, comparable in size to the 1969 Crab glitch, which was also fitted using a
two-component model. The Crab glitch of 1975 was instead a lot larger, by about three
orders of magnitude, and its data could not be fitted using the simple two-component model.
This adds weight to the comments made by Downs that the two-component model fails in
the large glitch regime.

In 1990, Flanagan (1990, Nature 345, 416) produced results from the analysis of the
1988 Vela pulsar glitch. She found that there was an additional coupling timescale when the
data were fitted using exponential functions. This timescale was much shorter that those
previously discovered (τ = 0.4±1 days), most probably due to the fact that observations had
not been made so soon after a glitch prior to this one. This extra coupling constant provided
evidence for the presence of two superfluid components, both linearly coupled to the crust
and its accompanying constituents. This finding was supported by Ali et al. (1990, Nature
348, 707).

Michel et al. (1990, MNRAS 246, 624) showed that the glitches occurring in PSR 1737-30
were very well fitted with a simple two-component model. This showed that in this pulsar
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at least, there is no change in moment of inertia (i.e., Q = 1), and supported the case for
continued validity of the two-component model.

In 1996, Lyne et al. (1996, MNRAS 281, L14) performed an analysis on a glitch in PSR
B1757-24. It was one of the largest recorded glitches, having magnitude ∆Ω/Ω ≈ 2× 10−6.
The decay was fitted using an exponential function, as given by the two-component model,
having coupling constant of τ = 42± 14 days, and a post glitch spin down rate equal to the
pre-glitch value (i.e., Q = 1 once again), further strengthening the case of the two-component
model as a contributor of pulsar glitches.

Also in that year, Shemar & Lyne (1996, MNRAS 282, 677)presented a collection of
results on the analysis of 25 glitches occurring in ten pulsars. They found that the older
pulsars did not show substantial recovery towards pre-glitch frequencies (i.e., they displayed
small Q values), while the younger pulsars displayed substantial recoveries towards pre-glitch
rotation frequencies. However, almost all the glitches showed some form of recovery, which
was easily modeled using a single exponential having a time constant of the order of 100
days, followed by a long term relaxation, of at least 1000 days (in most cases, this value was
greater than the inter-glitch spacing). The few glitches for which this was not found to be
the case were those for which the timing data was either too sparse or too noisy for accurate
analysis. These findings were later confirmed by Lyne & Shemar (2000, MNRAS 315, 534).

In 2005, Shabanova (2005, MNRAS 356, 1435), published results on three glitches in PSR
B1822-09. These glitches exhibited recovery, similar to that described by the two-component
model, with timescales of τ ∼ 100 days, 235 days and 80 days respectively.

In summary: the two-component model is the oldest model still in use for explaining the
glitch phenomenon. It has been scrutinized and revised numerous times, taking on various
guises, with a more complex model being created each time. However, the basics of the
model have remained the same; there exist two separate rotating components in a neutron
star, which are coupled to one another by some coupling parameter. Theoretically, consensus
on the composition and proportion of the two components has not been reached yet. Neither
has there been agreement on the method of coupling between the two components, although
vortex pinning and unpinning is the prime candidate. Observationally, there has been debate
over the agreement of the model with the observational data of some glitches. This has,
however, been the exception rather than the rule. For most glitches the data could be
explained using an exponential fit, based on the two-component model.

A final remark: in 1980, Tsakadze & Tsakadze (1980, Journal of Low Temp. Phys
39m 649) published the results of various experiments performed over a number of years
to determine whether the glitching behaviour of pulsars could be reproduced in labs using
4He superfluidity. The experiments did in fact agree with expectations based on the two-
component model of Baym et al. (1969). This further strengthens the simplicity of the
two-component model adding weight to its validity.
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Lecture Notes 5

1 Formation of an Accretion Disc

1.1 Circularization Radius

When the accreting gas has some angular momentum associated with it, then it forms a so
called accretion disc. The accreting gas forms a disc around the central attracting object
and a particular parcel of matter gradually spirals inward, thereby decreasing its negative
gravitational potential energy. There is strong circumstantial evidence that this is the process
by which energy is released in many astronomical systems. The first astronomical observations
in the X-ray band (Giacconi et al. 1962) established the existence of compact X-ray sources.
After the launch in 1970 of the satellite Uhuru, devoted completely to X-ray astronomy, it
was possible to identify several compact X-ray sources with binary stellar systems. The most
plausible model for such system is that the binary contains a neutron star (or black hole) and
another “normal” gaseous star (called “donor star”) of mass Md, as sketched in Figure 1.

Figure 1: An X-ray binary, with a black hole accretor, an accretion disc and a low mass
donor star (Md ∼< 1 M⊙). The donor star is filling the Roche lobe and transfers gas towards
the accretor via the accretion disc.

Since the gas from the donor star has angular momentum due to the orbital motion of
the donor around the center of mass of the binary, the gas flows towards the compact star
by first forming an accretion disc. The gravitational energy lost is radiated in the form of
X-rays.

Actually, the “accretor” can also be a white dwarf, although in that case the radiation
emitted will not peak in X-rays but in the Optical/UV (for reason connected with the gravi-
tational potential of the gas in the WD gravitational field, which is much weaker than in NS
or BHs in the innermost regions of the accretion disc). Also the donor can indeed be different
than a normal star, and be for example a brown or a white dwarf.

If the disc has a semi-thickness h(r) and a radial coordinate r, then the thin disc model
applies when h(r)/r ≪ 1. This is true in many (but not all) X-ray binaries, and we will work
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under this hypothesis from now on. The thin accretion disc model was studied in detail in a
famous paper1 by Shakura & Sunyaev (1973, Astron. Astrophys., Vol. 24, p. 337 - 355).

When the gas leaves the donor star via the Lagrangian point L1 (see Fig. 13.12 in
S&T), it has a substantial angular momentum which is equal to the specific orbital angular
momentum. To a good approximation, we can take the stream trajectory as the orbit of a
test particle released from rest at L1, and thus with a given angular momentum, falling in
the gravitational field of the accretor alone. This would give an elliptical orbit lying in the
binary plane: the presence of the secondary causes this to precess slowly. (The presence of the
donor star changes indeed the effective gravitational potential from the exact 1/r dependence
which is required for closed periodic orbits, as it would be if only the accretor were present).
A continuous stream trying to follow this orbit will therefore intersect itself, resulting in
dissipation of energy via shocks. On the other hand, the gas has little opportunity to rid
itself of the angular momentum it has on leaving L1, so it will tend to the orbit of lowest
energy for a given angular momentum, i.e., a circular orbit. We thus expect the gas initially
to orbit the primary in the binary plane at a radius Rcirc such that the Kepler orbit at Rcirc

has the same specific angular momentum as the transferring gas has on passing through L1.
Thus the gas will have a circular velocity:

vφ =

(

GMd

Rcirc

)1/2

(1)

where we have used cylindrical coordinates (r, φ, z), with φ the azimuthal coordinate. At this
point the gas flows in a thin ring and has to expand in the radial direction (both inwards and
outwards) to create an accretion disc. The inertial forces of the gas will be given by Rcirc · vφ,
which for a typical accretion disc are equal to approximately 1018 cm2 s−1. If the gas was
collisionless, then the flow will proceed along the circularization ring and an accretion disc
cannot form in any circumstance. The real gas flow instead will be an hydrodynamic flow,
in the sense that collisions, and thus viscosity, has an important role. Now, to form a disc
structure starting from a ring, part of the gas in the ring needs to move inward. But this
is not sufficient, since the total angular momentum in the disc must be conserved because
there is no external torque acting on the gas. Thus, to an inward motion there must be a
corresponding outward gas motion. The gas spiraling inward/outward has less/more angular
momentum than the original gas at the circularization radius. The net effect is that the total
angular momentum is conserved and the original gas ring has now expanded into an extended
accretion disc. To have this outward angular momentum transport, we need viscosity.

1.2 The Role of Viscosity

Viscosity is the fluid internal resistance to flow and can be though as the equivalent of a
“fluid friction”. All fluids have a viscosity, except ideal fluids and superfluids. The accreting
gas behaves as a viscous fluid, and viscosity has a fundamental role for at least two reasons:

• for the formation of the accretion disc itself (the outward/inward gas motion)

• for conversion of gravitational potential energy into radiation

However, viscosity is perhaps the most poorly understood property of accreting discs, despite
several decades of intensive research in this field. The reason, which might appear surprising

1this paper is one of the most cited in all fields of astronomy, with more than 5000 citations at the time of

writing
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at first, is that we do not understand completely the origin of viscosity in the accretion disc
gas. Why ? Can’t we treat viscosity just as in normal fluids we know in everyday life (like
water) ? The short answer is: no, we cannot.

The accreting gas flowing at the circularization radius will be laminar or turbulent ac-
cording to the Reynold number:

ℜ =
inertial forces

viscous forces
=

R vφ

ν
(2)

where ν is the viscosity of the gas. In lab experiments, the ℜ number gives turbulence when
it is larger than about ∼ 10–1000. Now, suppose the viscosity is given by the molecular
scattering of particles, so that νmol = λmfp cs, where λmfp is the mean free path of gas
particles and cs is the sound speed. The molecular scattering is for example responsible for
the viscosity of air or water, just to give two familiar examples. It might appear natural
therefore to extend this also to accretion discs.

If the accreting gas is sufficiently hot, then it will constitute a plasma with each plasma
particle having a mean free path λmfp ≃ (nσ)−1 =

(

4π b2
c n
)−1

. Here n is the number den-
sity of molecules (or particles in this case) and bc is the “impact parameter” for plasma,
which can be determined by considering the electrostatic interaction between the charged
component of the plasma (for typical accretion discs the temperature is ∼ 104 K so a
plasma of electrons and protons is formed, since the gas is mainly composed by Hydro-
gen which is ionized above ≈ 6500K). The impact parameter can be calculated by equating
the electrostatic potential between Z charges of charge e and the thermal temperature of the

plasma. Therefore
(

Ze2
)

/bc ≃ (3/2)kbT . Numerically this gives λmfp ≈ 6 × 104

(

T 2

n

)

cm

and cs ≈ 104T 1/2 cm s−1. Therefore the molecular viscosity can be calculated as νmol ≃

6 × 108 T 5/2n−1 cm2 s−1. For typical astrophysical accretion disc values (n ≈ 1015 cm−3,
T ≈ 104K), the value of ℜ will be extremely high (typical values are ℜ > 1014). Therefore
the molecular viscosity is completely irrelevant when compared to inertial forces, and there-
fore cannot be that important to determine the formation of an accretion disc (the situation
will be almost identical to the collisionless gas case). To fix ideas, note that disturbances are
propagated by viscous diffusion over a distance l on a time scale of order:

tvisc ∼ l2/ν (3)

where ν is the molecular viscosity. This timescale is about ∼ 108 years for typical accretion
disc sizes l ∼ 1010 cm and ν = 104 cm2 s1. This is orders of magnitude too long for the time
variability seen in compact object accretion discs.

Since ℜ is very large for molecular viscosity, we might conjecture that the gas flow in
accretion discs is also turbulent, although there is, as yet, no proof that this is so. If this
is the case, the flow will be characterized by the size λturb and turnover velocity vturb of
the largest turbulent eddies. Since the turbulent motion is completely chaotic about the
mean gas velocity, our simple viscosity calculations apply: there is a turbulent viscosity
νturb = λturbvturb. Although this result has a neat appearance, it is here that our troubles
with viscosity really begin. Turbulence is one of the major uncharted areas of classical physics
and we do not understand the onset of turbulence, still less the physical mechanisms involved
and how they determine the length-scale, λturn, and turnover velocity vturn. The most we
can do with present knowledge is to place plausible limits on these two parameters. First, the
typical size of the largest turbulent eddies cannot exceed the disc thickness, so λturn < H,
where we have used the disc scale height H. Second, it is unlikely that the turnover velocity is
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supersonic, for, in this case, the turbulent motions would probably be thermalized by shocks.
Thus, we can write:

ν = α cs H (4)

and expect α < 1. This is the so-called α-prescription of think accretion discs, and all our
ignorance on the viscosity ν has just been isolated in α. However, apart from the rather
obvious expectation α < 1 we have gained nothing so far. Nonetheless, the α-prescription
has proved a useful parametrization of our ignorance and has encouraged a semi-empirical
approach to the viscosity problem, which seeks to estimate the magnitude of α by a compar-
ison of theory and observation. There is, for example, some reason to believe that α ∼ 0.1
in accretion discs in accreting white dwarfs, at least some of the time.

1.3 Rayleigh Stability

There is however still a fundamental problem in this whole picture, in the sense that even if
we have quite reasonably assumed that turbulence plays a role in determining the viscosity
of the accretion disc, we still have not identified any energy source to sustain this turbulence.
The most obvious solution to this problem is to invoke a hydrodynamic instability. However,
the angular velocity Ω of the gas in the accretion disc scales as r−3/2 (i.e., Keplerian motion),
and therefore the gas will obey the Rayleigh stability criterion:

d
(

r2Ω
)2

dr
> 0 (5)

The above simple criterion is derived and explained in the Appendix of these notes.
Any realistic accretion disc (in the thin accreton disc case for example Ω ∝ r−3/2) is there-

fore linearly stable to pure hydrodynamic perturbations: they satisfy the classical Rayleigh
criterion for axisymmetric perturbation by a safe margin and they are also stable to non-
axisymmetric disturbances. Therefore even if the shear in the mean flow generates turbulence
with the desired transport of angular momentum outward, the Reynolds turbulent stress will
inevitably decay (because it is Rayleigh stable) unless some other effect feeds energy back
into the turbulence.

1.4 Magneto-Rotational Instability (MRI)

A mechanism that currently looks very promising in that it seems to satisfy all the consistency
requirements mentioned above and predicts a viscosity of the right magnitude and sign is
magneto-hydrodynamic (MHD) turbulence. MHD turbulence differs from the hydrodynamic
turbulence described above in the sense that magnetic fields have now an effect on the plasma
flow and the Rayleigh stability criterion outlined above does not apply anymore. Now, it can
be demonstrated that with a magnetic field in the plasma, the stability is guaranteed only if:

dΩ2

dr
> 0 (6)

Therefore for a Keplerian disc with Ω ∝ r−3/2, the stability criterion is not satisfied and
the disc becomes unstable to axisymmetric perturbations. This idea of MHD turbulence is
not new, but has received fresh impetus in the context of accretion discs through the recent
rediscovery by Balbus and Hawley (1991) of a weak field instability originally discussed by
Velikhov (1959) and Chandrasekhar (1960, 1961). The addition of a magnetic field implies
that even though the perturbations are still axisymmetric, the angular momentum of each
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fluid element is no longer conserved because the magnetic field can apply stresses which move
it about. Under these circumstances, instability to axisymmetric perturbations occurs when
the angular velocity decreases outwards.

In an ideal plasma (i.e. a magnetized, perfectly conducting fluid), the action of the
magnetic field is to link neighboring fluid parcels that lie along a common field line. One
property of ideal plasmas is that magnetic field lines are frozen in the fluid parcels, so that the
motion of the fluid carries the magnetic field along with it. This lends itself to a beautifully
simple physical picture of the magnetic forces; the fluid parcels can be thought of a beads
tied together on a string. If for some reason fluid parcels start to diverge, the tension in the
magnetic string acts to bring the connected fluid elements back together (see Figure 2).

Figure 2: Motion of the fluid parcels (red and blue circles) carries the magnetic field lines
(purple line) along with them. The resultant magnetic forces are shown (red and blue arrows)
which arise due to tension in the field lines.

Intuitively, we can just think of the magnetic force acting on the fluid as springs tying
neighboring fluid elements together! Normally, we think of a spring as a restoring force, which
tends to preserve a systems stability. However, if the fluid motion occurs in a differentially
rotating frame, it turns out that this restoring force can actually lead to the system desta-
bilizing. Imagine that the red particle in Figure 2 is at a radius r + ǫ with respect to the
blue particle, which is at a radius r. Here ǫ represents an infinitesimal displacement along
the radial accretion disc coordinate. The red particle has therefore a slightly larger angular
momentum than the blue particle and they start to rotate differentially on different Keplerian
orbits. The blue particle will rotate faster than the red particle (Ω ∝ r−3/2) and therefore
the “magnetic spring”, that connects the two particles, will pull the red particle. The pulled
red particle will therefore increase its angular momentum, and move further outward. The
blue particle will instead be slowed down by the red particle, and will move further inward.
As the red and blue particles move outward and inward, the situation becomes worse and
worse and the process keeps going on (see Figure 3). This is the origin of the MRI. Now it is
clear how an accretion disc can develop from the simple circular ring of material we started
with.

A schematic summary of the MRI goes as follows:

• a) Magnetically connected fluid elements have some initial displacement

• b) Differential rotation increases the displacement, and magnetic tension causes the
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Figure 3: Growth of the MRI due to differential rotation

inner parcel to slow down, and the outer parcel to speed up

• c) This transfer of angular momentum causes the inner parcel to migrate inwards and
the outer parcel to be pushed outwards.

• d) Repeat from step a, but now with a larger displacement.

However, if the magnetic field is too strong (i.e. the tension in the spring is too strong),
the feedback cycle will not run. The tension will instead cause the displacement between
fluid parcels to oscillate rather than grow in step b).

2 Accretion disc structure

An accretion disc can conveniently be divided into three distinct regions, depending on r.
These regions are:

• 1. An outer region, at large r, in which gas pressure dominates radiation pressure and
in which the opacity is controlled by free-free absorption;

• 2. A middle region, at smaller r, in which gas pressure dominates radiation pressure
but the opacity is mainly due to electron scattering; and

• 3. An inner region, at very small r, in which radiation pressure dominates gas pressure
and again, scattering dominates absorption in the opacity. (For some choices of h, the
inner and middle regions may not exist at all.)

Typically, the transition from the outer to middle region occurs at a radius rom when
k̄ff ≃ k̄es,which occurs at

2rom

rs
= 4 × 103

(

Ṁ17

M/M⊙

)2/3

(7)
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Here rs = 2GM/c2 is the Schwarzschild radius, Ṁ17 is in units of 1017 g s−1. The transition
from the middle to the inner region (point rmi) instead can be found when Pgas ≃ Prad:

2rmi

rs
= 80α2/21

(

M

M⊙

)−2/3

Ṁ
16/21

17
(8)

Now, the gas flows in the accretion disc because of some form of turbulent viscosity (like
the MRI sketched above), and this process heats up the disc from the outer regions towards
the innermost part. The viscosity generates entropy (heat) which is released as thermal
radiation. The integrated flux emitted from the top and bottom faces of the disk at r is:

F (r) = h(r)Q̇ =
3Ṁ

8π r2

GM

r

[

1 −
(rI

r

)1/2
]

(9)

with Q̇ the heat production rate, rI the innermost disc radius and h the semi-thickness of
the disc at radius r. The curious reader can find the derivation of this equation in §14.5 of
the textbook S&T. Here we need just to know that this equation is found when assuming
that no heat is stored in the disc but it is totally radiated away, that the disc has a shear
flow and that mass and angular momentum are conserved.

To summarize: the particle leaves the donor at the lagrangian point L1 and enters the
gravitational potential well of the accretor. The gravitational potential energy is converted
in kinetic energy of the particle that rotates around the circularization radius. The kinetic
energy is then converted into heat by viscosity, which is also responsible for the formation
of the accretion disc. As the disc forms, an inward matter flow starts, with the gas sinking
in the potential well of the accretor. More gravitational potential energy is converted into
kinetic energy, and more kinetic energy is converted into heat. The heat is finally released as
thermal radiation, with the inner regions which are hotter than the outer regions, because of
the energy release of gravitational potential energy. The thermal radiation is then detected
from the distant observer.

2.1 Vertical disc structure

So far we have discussed the horizontal structure of a thin accretion disc. The vertical
structure can be calculated very easily by assuming that the gas is in hydrostatic equilibrium
along the vertical coordinate z. This means that the vertical component of the gravitational
force of the compact object has to be equal to the vertical pressure gradient. Therefore:

1

ρ

dP

dz
= −

GM

r2

z

r
(10)

with z ≪ r. Replacing the differentials with finite differences (that is, setting ∆ P ≈ P ,
where P is the pressure at z = 0, and setting ∆ z = h) yields:

h =

(

P

ρ

)1/2( r3

GM

)1/2

≈
cs

Ω
(11)

where cs is the sound speed in the disc midplane, and where we have used the definition of
the sound speed cs =

√

P/ρ.
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Appendix: The Rayleigh Stability Criterion

Consider a fluid of uniform density rotating differentially around its axis of symmetry (like
an accretion disc). To find the condition for its stability, we suppose that a fluid ring at a
distance r0 from the axis moving with velocity v0 is interchanged with a fluid ring at a greater
distance r1 (i.e., r1 > r0) moving with velocity v1. The system is stable if the displaced fluid
rings tend to return to their initial positions, whereas it is unstable if the displaced rings
move further away. Assuming conservation of angular momentum, we conclude that the fluid
ring displaced from r0 to r1 acquires a velocity (r0/r1)v0. The ring previously at r1 had a
centripetal acceleration v2

1
/r1, which must have been provided by the various forces there

such as the part of the pressure gradient left after balancing gravity. The ring brought to r1

now acquires a centripetal acceleration r2
0
v2
0
/r3

1
to remain in its new position. If this is less

that v2
1
/r1, then we expect the forces present there to push the ring inward towards its initial

position. The condition for stability is then

r2
0
v2
0

r3
1

<
v2
1

r1

(12)

so that:
(

r2

0Ω0

)2
<
(

r2

1Ω1

)2
(13)

where Ωn = vnrn is the angular velocity at radius rn. This stability condition can be rewritten
as:

d
(

r2Ω
)2

dr
> 0 (14)
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Lecture Notes 6

1 Radio Pulsar Timing

1.1

Pulsars are excellent celestial clocks. The period of the first pulsar was found to be stable
to one part in 107 over a few months. Following the discovery of the millisecond pulsar
B1937+21 it was demonstrated that its period could be measured to one part in 1013 or
better. This unrivaled stability leads to a host of applications including uses as time keepers,
probes of relativistic gravity and natural gravitational wave detectors.

Each pulsar is typically observed at least once or twice per month over the course of a
year to establish its basic properties. Figure 1 summarise the essential steps involved in a
pulse time-of-arrival (TOA) measurement.

Figure 1: Schematic showing the main stages involved in pulsar timing observations.

Pulses from the neutron star traverse the interstellar medium before being received at the
radio telescope where they are dedispersed and added to form a mean pulse profile. During
the observation, the data regularly receive a time stamp, usually based on a caesium time
standard or hydrogen maser at the observatory plus a signal from the Global Positioning
System of satellites (GPS). The TOA is defined as the arrival time of some fiducial point on
the integrated profile with respect to either the start or the midpoint of the observation. It
is observed that a pulse profile has a stable form at any given observing frequency, so that
the TOA can be accurately determined by cross-correlation of the observed profile with a
high S/N template profile obtained from the addition of many observations at the particular
observing frequency.

To model the rotational behaviour of the neutron star we ideally require TOAs measured
by an inertial observer. An observatory located on Earth experiences accelerations with re-
spect to the neutron star due to the Earths rotation and orbital motion around the Sun
and is therefore not in an inertial frame. To a very good approximation, the solar system
centre-of-mass (barycentre) can be regarded as an inertial frame. It is now standard prac-
tice to transform the observed TOAs to this frame using a planetary ephemeris such as the
JPL DE405 (JPL DE stands for “Jet Propulsion Laboratory Development Ephemeris”). The
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ephemerides DE405 are expressed in coordinates referred to the ICRF (International Celes-
tial Reference Frame). These ephemerides provide solar-system barycentric coordinates of
position and velocity for the Earth-Moon barycenter, Sun and eight major planets, and geo-
centric coordinates of the Moon. In this way the solar system barycenter can be determined
with great accuracy for any specified period epoch.

The transformation between barycentric time (t) and observed time (τ) takes the form:

t − τ =
r̄ · s̄

c
+ +

(r̄ · s̄)2 − |r̄|2

2cd
+ ∆S⊙

+ ∆E⊙
− ∆ D/f2 (1)

Here r̄ is the position of the observatory with respect to the barycentre, s̄ is a unit vector
in the direction of the pulsar at a distance d and c is the speed of light. The first term on
the right hand side of the equation is the light travel time from the observatory to the solar
system barycentre. This term is usually called the “Roemer delay”. The second term is the
“annual parallax”. Incoming pulses from all but the nearest pulsars can be approximated by
plane wavefronts. The second term, which represents the delay due to spherical wavefronts,
yields the parallax and hence the distance d. This has so far only been measured for five
nearby millisecond pulsars.

The term ∆s⊙ represents the Shapiro corrections due to general relativistic time delays
in the solar system. This correction arises because of the extra delays due to the curvature
of space-time caused by thre presence of masse sin the solar system. The Shapiro delay can
be calculated as:

∆ t = −
2GM

c3
ln(1 − s̄ · x̄) (2)

where s̄ is again the vector pointing from the observed to the source and x̄ is the vector
pointing from the observer to the gravitating mass M . The delays are largest for a signal
passing the limb of the Sun (∼ 120µ s) while Jupiter can contribute as much as 200 ns. In
principle one has to sum over all the solar system bodies, with the effect being larger for the
most massive bodies and for those bodies which are grazed by the radio beam. In practice,
giving the timing precision usually achievable with typical pulsars, only the Sun and in a few
occasions Jupiter, need to be considered for this correction. The third term, the “Einstein
delay”, describes the combined effect of time dilation due to the motion of the Earth and
gravitational redshift caused by the other bodies in the solar system. This time varying effect
takes into account the variation of an atomic clock on Earth in the changing gravitational
potential as the Earth follows its elliptical orbit around the Sun. Since measurements can be
carried out at different observing frequencies f with different dispersive delays D, TOAs are
generally referred to the equivalent time that would be observed at infinite frequency. This
transformation is the term ∆D/f2. The quantity ∆D is related to the dispersion measure

DM via a constant k = e2

2π mec (cf. Eq. 10.4.13 on Shapiro & Teukolsky) and f is the
frequency of the electromagnetic wave observed (not the pulsar frequency !).

Following the accumulation of a number of TOAs, a surprisingly simple model is usually
sufficient to account for the TOAs during the time span of the observations and to predict
the arrival times of subsequent pulses. The model is a Taylor expansion of the rotational
frequency Ω = 2πP (with P equal to the pulsar spin period) about a model value Ω0 at some
reference epoch t0. The model pulse phase is:

φ(t) = φ0 + Ω0(t − t0) +
1

2
Ω̇0(t − t0)

2 +
1

3!
Ω̈0(t − t0)

3 + ... (3)

where t is the barycentric time and φ0 is the pulse phase at t0. Based on this simple
model, and using initial estimates of the position, dispersion measure and pulse period,
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a timing residual is calculated for each TOA as the difference between the observed and
predicted pulse phases.

Ideally, the residuals should have a zero mean and be free from any systematic trends.
To reach this point, however, the model needs to be refined in a bootstrap fashion. Early
sets of residuals will exhibit a number of trends indicating a systematic error in one or more
of the model parameters, or a parameter not incorporated into the model (see Figure 2).

Figure 2: Timing model residuals for PSR B1133+16. Panel a: Residuals obtained from
the best-fitting model which includes period, period derivative, position and proper motion.
Panel b: Residuals obtained when the period derivative term is set to zero. Panel c: Residuals
showing the effect of a 1-arcmin position error. Panel d: Residuals obtained neglecting the
proper motion. The lines in Panels bd show the expected behaviour in the timing residuals
for each effect.

From Equation (2), an error in the assumed Ω0 results in a linear slope with time. A
parabolic trend results from an error in Ω̇0 (see Panel b of Figure 2). Additional effects
will arise if the assumed position of the pulsar (the unit vector s̄ in Equation 1) used in the
barycentric time calculation is incorrect. A position error results in an annual sinusoid (see
Panel c of Figure 2). A proper motion produces an annual sinusoid of linearly increasing
magnitude (see Panel d of Figure 2).

After a number of iterations, and with the benefit of a modicum of experience, it is
possible to identify and account for each of these various effects to produce a timing solution
which is phase coherent over the whole data span. Phase coherent or “phase-connected”
means that the model is able to describe each rotation of the neutron star at any time within
your data span. Therefore given a certain arbitrary time t̂ that lies in the data window where
the timing model is accurate, it is possible to predict the exact position of the neutron star
in its rotational motion with a precision better than 0.5 cycles (usually this precision is much
better than 0.5 cycles, typical values being less than 0.01-0.1 cycles).

The resulting model parameters provide spin and astrometric information with a precision
which improves as the length of the data span increases. For example, timing observations of
the original millisecond pulsar B1937+21, spanning almost 9 years (exactly 165,711,423,279
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rotations!), measure a period of 1.5578064688197945 ± 0.0000000000000004 ms defined at
midnight Universal Time on December 5, 1988! Measurements of other parameters are no
less impressive, with astrometric errors of 3 µarcsec being presently possible for the bright
millisecond pulsar J04374715.

1.2 Braking index

Pulsars have strong dipole magnetic fields and according to classical electrodynamics the
radiation power equals the spin-down luminosity:

Ėdipole =
2

3c3
|m|2Ω4 sin2 α = Ėsd = −IΩΩ̇ (4)

(see §10.5 on Shapiro & Teukolsky). By using the pulsar spin frequency ν = 1/P rather
than Ω, it follows that:

ν̇ = −Kνn (5)

where n is the braking index and K is usually assumed to be constant. We expect that n = 3
for pure magnetic dipole spin down, since:

Ω̇ = −

(

2|m|2sin2α

3I c3

)

Ω3 (6)

which follows from Eq. 1.2. However, other dissipation mechanisms may exist (e.g., a wind
or outflow of particles) that carry away angular momentum from the neutron star other than
the pure magneto dipole spin down. The braking index can be determined if, in addition to
ν̇, a second spin frequency derivative ν̈ can be measured. Differentiating the above expression
for ν̇ we have:

n =
νν̈

ν̇2
(7)

Usually the observed ν̈ is contaminated by the so-called “timing noise” (see next sec-
tion). However, for a few pulsars, a determination of the braking index that reflects the true
spin=down behaviour has been determined. Values range from n = 1.4 to n = 2.9. These
deviations indicate that the assumption n = 3 is usually not correct ! Nevertheless, this
supposition is usually made to define a number of useful quantities that are used to char-
acterise the basic properties of a radio pulsar. It should always be kept in mind that the
resulting quantities are rough model-dependent estimates.

1.3 Timing noise

Timing noise manifests itself in a quasi-random walk in one or more of the rotational param-
eters on timescales of months to years (see Figure 3).

It appears mostly for young pulsars and scales with some power of the period derivative
Ṗ . The older millisecond pulsars show much less timing noise, althougj it is observed in some
sources, albeit with a musch smaller amplitude. It nevertheless affects the timing precision
of some millisecond pulsars, with the fast rotating pulsar B1937+21 (P = 1.56 ms) as the
most prominent example (see for example, Kaspi et al. 1994, The Astrophysical Journal, vol.
428, no. 2, pt. 1, p. 713-728). Usually, timing noise is recognized by the measurement of
the second derivative of the pulsar spin frequency ν̈, that is hugely inconsistent with that
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Figure 3: Examples of timing residuals for a number of young radio pulsars. Note the varying
scale on the ordinate axis, the pulsars being ranked in increasing order of timing activity.
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expected for a standard pulsar spin down evolution with a braking index of n = 3. By
inverting the braking index equation, we can obtain an expected ν̈ value as:

ν̈ =
nν̇2

ν
(8)

For a typical young pulsar with ν = 1 Hz and ν̇ = 10−15 Hz s−1, the expected value for
n = 3 is ν̈ ∼ 10−30 Hz s−2. Such values are measurable only for the youngest pulsars. Often,
howeverm the timing analysis produces significant values for ν̈, positive and negative, that
are much larger than this. Unless other explanations are put forward, a measurament like
this is a clear indication for timing noise.

But what is the physical meaning of timing noise in radio pulsars ? And why is it
almost completely absent in old millisecond pulsars ? While the physical processes of this
phenomenon are not well understood, it seems likely that they may be connected to superfluid
processes and temperature changes in the interior of the neutron star, or to processes in
the magnetosphere. In both cases the relative weak strength of the old millisecond pulsar
magnetic fields might be connected with the relatively small activity of timing noise in these
pulsars. However, after about 50 years of pulsar observations, the physical meaning of timing
noise remains a big mistery of neutron star science.

1.4 Timing binary pulsars

For binary pulsars, the timing model introduced above needs to be extended to incorporate
the additional motion of the pulsar as it orbits the common centre-of-mass of the binary
system. Describing the binary orbit using Kepler’s laws to refer the TOAs to the binary
barycentre requires five model parameters: the orbital period Pb, projected semi-major axis
x = ap · sin(i) (ap is the semimajor axis of the pulsar orbit), orbital eccentricity e, longitude of
periastron ω, and the epoch of periastron passage T0. This description, using five “Keplerian
parameters”, is identical to that used for spectroscopic binary stars.

Figure 4

The orbital elements can be defined as follows:
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• inclination (i): angle between the orbital plane and a reference plane.

• argument of pericenter (ω): the angle from the ascending node to the body in the
orbital plane (denoted when measured from any point in the orbital plane).

• semimajor axis (ap): half the major axis of the neutron star orbit’s ellipse.

• eccentricity (e)

• epoch of periastron (T0): time at which the pulsar passed through the periastron.

Analogous to the radial velocity curve in a spectroscopic binary, for binary pulsars the
orbit is described by the apparent pulse period against time. An example of this is shown
in Panel a of Figure 5. Alternatively, when radial accelerations can be measured, the orbit
can also be visualised in a plot of acceleration versus period as shown in Panel b of Figure 5.
This method is particularly useful for determining binary pulsar orbits from sparsely sampled
data.

(a) (b)

Figure 5: Panel a: Keplerian orbital fit to the 669-day binary pulsar J0407+1607. Panel b:
Orbital fit in the period-acceleration plane for the globular cluster pulsar 47 Tuc S.

Constraints on the masses of the pulsar mp and the orbiting companion mc can be placed
by combining x and Pb to obtain the mass function

fmass =
4π2

G

x3

P 2
b

=
(mc sin i)3

(mp + mc)2
, (9)

where G is Newton’s gravitational constant and i is the (initially unknown) angle between the
orbital plane and the plane of the sky (i.e. an orbit viewed edge-on corresponds to i = 90◦).
The mass function can be easily derived from the Kepler laws.

In the absence of further information, the standard practice is to consider a random
distribution of inclination angles. Since the probability that i is less than some value i0 is
p(< i0) = 1 − cos(i0), the 90% confidence interval for i is 26◦ < i < 90◦. For an assumed
pulsar mass, the 90% confidence interval for mc can be obtained by solving Equation (9) for
i = 26◦ and 90◦.

Although most of the presently known binary pulsar systems can be adequately timed
using Kepler’s laws, there are a number which require an additional set of “post-Keplerian”
(PK) parameters which have a distinct functional form for a given relativistic theory of grav-
ity. In general relativity (GR) the PK formalism gives the relativistic advance of periastron

ω̇ = 3

(

Pb

2π

)−5/3

(T⊙M)2/3(1 − e2)−1, (10)
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the time dilation and gravitational redshift parameter

γ = e

(

Pb

2π

)1/3

T
2/3
⊙ M−4/3mc(mp + 2mc), (11)

the rate of orbital decay due to gravitational radiation

Ṗb = −
192π

5

(

Pb

2π

)−5/3 (

1 +
73

24
e2 +

37

96
e4

)

(

1 − e2
)−7/2

T
5/3
⊙ mpmcM

−1/3 (12)

and the two Shapiro delay parameters

r = T⊙mc (13)

and

s = x

(

Pb

2π

)−2/3

T
−1/3
⊙ M2/3m−1

c (14)

which describe the delay in the pulses around superior conjunction where the pulsar radiation
traverses the gravitational well of its companion. In the above expressions, all masses are in
solar units, M ≡ mp + mc, x ≡ ap sin i/c, s ≡ sin i and T⊙ ≡ GM⊙/c3 = 4.925490947 µs.
Some combinations, or all, of the PK parameters have now been measured for a number of
binary pulsar systems. Further PK parameters due to aberration and relativistic deformation
are not listed here but may soon be important for the double pulsar.

1.5 Testing general relativity

The key point in the PK definitions introduced in the previous section is that, given the
precisely measured Keplerian parameters, the only two unknowns are the masses of the pulsar
and its companion, mp and mc. Hence, from a measurement of just two PK parameters (e.g.,
ω̇ and γ) one can solve for the two masses and, using Equation (9), find the orbital inclination
angle i. If three (or more) PK parameters are measured, the system is “overdetermined” and
can be used to test GR (or, more generally, any other theory of gravity) by comparing the
third PK parameter with the predicted value based on the masses determined from the other
two.

The first binary pulsar used to test GR in this way was PSR B1913+16 discovered by
Hulse & Taylor in 1974. Measurements of three PK parameters (ω̇, γ and Ṗb) were obtained
from long-term timing observations at Arecibo. The measurement of orbital decay, which
corresponds to a shrinkage of about 3.2 mm per orbit, is seen most dramatically as the
gradually increasing shift in orbital phase for periastron passages with respect to a non-
decaying orbit shown in Figure 8. This figure includes recent Arecibo data taken since the
upgrade of the telescope in the mid 1990s.

The measurement of orbital decay in the B1913+16 system, obtained from observations
spanning a 30-yr baseline, is within 0.2% of the GR prediction and provided the first indirect
evidence for the existence of gravitational waves. Hulse and Taylor were awarded the 1993
Nobel Physics prize in recognition of their discovery of this remarkable laboratory for testing
GR. A similar, though less precise, test of GR from this combination of PK parameters has
recently been performed in the double neutron star binary PSR B2127+11C in the globular
cluster M15. For this system, the measurement uncertainties permit a test of GR to 3%
precision which is unlikely to improve due to various kinematic contaminations including the
acceleration of the binary system in the cluster’s gravitational potential.
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Figure 6: Orbital decay in the binary pulsar B1913+16 system demonstrated as an increasing
orbital phase shift for periastron passages with time. The GR prediction due entirely to
the emission of gravitational radiation is shown by the parabola. Figure provided by Joel
Weisberg.

Five PK parameters have been measured for the double pulsar discussed in detail below
and for the double neutron star system PSR B1534+12 where the test of GR comes from
measurements of ω̇, γ and s. In this system, the agreement between theory and observation
is within 0.7%. This test will improve in the future as the timing baseline extends and a
more significant measurement of r can be made.

Currently the best binary pulsar system for testing GR in the strong-field regime is the
double pulsar J0737−3039. In this system, where two independent pulsar clocks can be
timed, five PK parameters of the 22.7-ms pulsar “A” have been measured as well as two
additional constraints from the measured mass function and projected semi-major axis of
the 2.7-s pulsar “B”. A useful means of summarising the limits so far is Figure 7 which
shows the allowed regions of parameter space in terms of the masses of the two pulsars.
The shaded regions are excluded by the requirement that sin i < 1. Further constraints are
shown as pairs of lines enclosing permitted regions as predicted by GR. The measurement of
ω̇ = 16.899 ± 0.001 deg yr−1 gives the total system mass M = 2.5871 ± 0.0002 M⊙.

The measurement of the projected semi-major axes of both orbits gives the mass ratio
R = 1.071 ± 0.001. The mass ratio measurement is unique to the double pulsar system and
rests on the basic assumption that momentum is conserved. This constraint should apply
to any reasonable theory of gravity. The intersection between the lines for ω̇ and R yield
the masses of A and B as mA = 1.3381 ± 0.007 M⊙ and mB = 1.2489 ± 0.0007 M⊙. From
these values, using Equations (11–14) the expected values of γ, Ṗb, r and s may be calculated
and compared with the observed values. These four tests of GR all agree with the theory to
within the uncertainties. Currently the tightest constraint is the Shapiro delay parameter s
where the observed value is in agreement with GR at the 0.05% level.

Another unique feature of the double pulsar system is the interactions between the two
pulsars’ radiation beams. Specifically, the signal from A is eclipsed for 30 s each orbit by the
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Figure 7: ‘Mass–mass’ diagram showing the observational constraints on the masses of the
neutron stars in the double pulsar system J0737−3039. Inset is an enlarged view of the
small square encompassing the intersection of the tightest constraints. The shaded region is
excluded by classical Keplerian motion, i.e., it is excluded by the mass function. The white
area is further constrained by using PK parameters as predicted by general relativity. The
measurement of ω̇ gives the total system mass (equal to ≈ 2.59 M⊙. The PK parameter R
gives the mass ratio mA/mB = 1.07. The parameter γ gives the gravitational redshift/time
dilation. The parameters r and s are the two Shapiro delay parameters. Ṗb is the orbital
period decay due to gravitational wave emission. This particular pulsar represents so far
(May 2011) the most precise test of general relativity in strong gravity field regime with a
precision of 0.05%.
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magnetosphere of B and the radio pulses from B are modulated by the relativistic wind from
A during two phases of the orbit. These provide unique insights into plasma physics and,
as shown shown in Figure 7, a measurement of relativistic spin–orbit coupling in the binary
system and, hence, another constraint on GR. By careful modeling of the change in eclipse
profiles of A over a four-year baseline, Breton et al. have been able to fit a remarkably simple
model and determine the precession of B’s spin axis about the orbital angular momentum
vector. This remarkable measurement agrees, within the 13% measurement uncertainty, to
the GR prediction.

It took only two years for the double pulsar system to surpass the tests of GR possible from
three decades of monitoring PSR B1913+16 and over a decade of timing PSR B1534+12.
On-going precision timing measurements of the double pulsar system should soon provide
even more stringent and new tests of GR. Crucial to these measurements will be the timing
of the 2.7-s pulsar B, where the observed profile is significantly affected by A’s relativistic
wind. A careful decoupling of these profile variations is required to accurately measure TOAs
for this pulsar and determine the extent to which the theory-independent mass ratio R can
be measured. This task is compounded by the fact that pulsar B’s signal is now significantly
weaker compared to the discovery observations five years ago. This appears to be a direct
result of its beam precessing out of our line of sight.

The relativistic effects observed in the double pulsar system are so large that corrections
to higher post-Newtonian order may soon need to be considered. For example, ω̇ may be
measured precisely enough to require terms of second post-Newtonian order to be included in
the computations. In addition, in contrast to Newtonian physics, GR predicts that the spins
of the neutron stars affect their orbital motion via spin-orbit coupling. This effect would
most clearly be visible as a contribution to the observed ω̇ in a secular and periodic fashion.
For the J0737−3039 system, the expected contribution is about an order of magnitude larger
than for PSR B1913+16. As the exact value depends on the pulsars’ moment of inertia, a
potential measurement of this effect would allow the moment of inertia of a neutron star
to be determined for the first time. Such a measurement would be invaluable for studies of
the neutron star equation of state and our understanding of matter at extreme pressure and
densities.

Finally, in the neutron star–white dwarf binary J1141−6545, the measurement of Ṗb,
ω̇, γ and s permit a 6% test of GR. Despite this being nominally only a relatively weak
constraint for GR, the significantly different self gravities of the neutron star and white dwarf
permits constraints on two coupling parameters between matter and the scalar gravitational
field. These parameters are non-existent in GR, which describes gravity in terms of a tensor
field, but are predicted by some alternative theories of gravity which consider tensor and
scalar field components. The constraints provided by PSR J1141−6545 for the strongly non-
linear coupling parameter are currently the most stringent to date and are set to improve
dramatically over the next five years of timing observations.

2 Accreting Magnetized Compact Objects

As we have seen in Lecture 10, magnetized compact objects like neutron stars or white dwarfs
can accrete by channeling plasma along the magnetic field lines in the innermost regions of the
disc. When the accretor is a white dwarf the binary system is called a cataclysmic variable,
which shows outburst-quiescence cycles as accreting neutron stars (see Lecture 10). There is
a very large sub-classification of cataclysmic variables often named after a bright prototype
star characteristic of the class, so their names are not particularly enlightening. What is
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important here is that the magnetic field of the white dwarf can be in some cases sufficiently
intense to disrupt the accretion disc (intermediate polar) or even to prevent the formation
of the accretion disc altoghether (polar). The term “polar” refers to the polsarization of the
emitted optical light, which is highly polarized for strongly magnetized objects. Polars and
intermediate polars do show pulsations in several wavelength, which unveil the rotational
period of the white dwarf. The highest magnetic field observed so far in polsar can reach
values up to 108 G.

Figure 8: Artist illustration of a “polar”. The magnetic field of the white dwarf is so intense
to prevent the formation of an accretion disc.

When the accretor is a neutron star we can split the classification in two broad classes: low
mass X-ray binaries (NS-LMXBs) and high mass X-ray binaries (NS-HMXBs). The “low”
and “high” mass refers to the companion star. In this section we will focus on accreting
neutron stars, mostly on NS-LMXBs.

Figure 9: Artist illustration of the innermost region of an accreting neutron star in a NS-
LMXB. The magnetic field of the neutron star truncates the accretion disc and channels the
gas along the field lines. The gas flows along the “accretion columns” and lands on the “hot
spot”. Since the gas has a sudden deceleration from highly supersonic to zero on the surface,
an “accretion shock” forms right above the hot spot.
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Orbital periods have been measured for some 30 of these systems. They range from 11
min. to 17 days, similar to the orbital periods of cataclysmic variables. Only in the few widest
of these systems one can observe the spectrum of the optical companion. In all other systems,
the optical spectrum is that of the hot accretion disk. The NS-LMXBs are very seldom X-ray
pulsars. The reason is not completely understood, and might be related with the evolution of
their magnetic field (usually 1081011 G), which is expected to result from accretion-induced
field decay. On the other hand these sources show X-ray bursts (sudden thermonuclear fusion
of accreted matter at the surface of the neutron star, which are suppressed if the magnetic
field strength is > 1011 G. For this reason such bursts are not observed in HMXBs. Among
∼ 150 NS-LMXBs, only ∼ 20 show X-ray pulsations. Of these, 14 show millisecond periods
(accreting millisecond X-ray pulsars, AMXPs), whereas the others have much higher spin
periods in the range of seconds.

There are dramatic differences in pulse shape and amplitude between one pulsar and
another. In some cases, the pulse profile shows a dependence on energy and luminosity.
AMXPs however always show an highly sinusoidal pulse profile which can be explained simply
in terms of single hot spot with varying projected area (due to rotation).

Figure 10: Observed pulse profile for the AMXP SAX J1808.4-3658 in three different X-ray
energy bands (two cycles are plotted for clarity). Note that the pulse profiles are almost
identical reagardless of the energy band, and show an almost purely sinusoidal shape which
can be easily explained in terms of one single rotating hot spot.

NS-LMXBs show an X-ray spectrum that is remarkably similar for pulsating and for non
pulsating sources. They are characterized by a continuum that peaks in the X-ray energy
band, and extends up to several hundreds keV. At very low X-ray energies the continuum is
dominated by the accretion disc, which emits as a multicolor disc blackbody. This is nothing
but a superposition of blackbodies at different temperatures, which can be identified with
different disc annuli. At higher temperatures there is a blackbody which is probably generated
by the thermal emission of the plasma hitting the neutron star surface. The high energy part
of the X-ray spectrum is instead probably generated by comptonization of soft (i.e., low
energy) X-ray photons coming from the hot spot and upscattered via inverse compton up to
several hundreds of keV (see Figure 11 for an example for the NS-LMXB SAX J1808.4-3658).
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Figure 11: Observed broadband X-ray spectrum of the AMXP SAX J1808.4-3658 during
its 2008 outburst. Three different component are visible: a disc component at soft energies
(green line) a blackbody probably corresponding to the hot spot (pink line) and a hard X-ray
component originating from comptonization of soft seed photons (dashed blue line). The
red line is the sum of the three components. The red and green dotted line refer to the
“unabsorbed” spectrum, i.e., to the spectrum in which the effect of galactic neutral hydrogen
absorption has been corrected.
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3 Isolated Neutron Stars

Beside radio pulsars and accreting neutron stars, a third important class of objects is the
isolated neutron star class. Observations of isolated neutron stars (and sometimes neutron
stars in quiescent X-ray binaries) are extremely important in fundamental physics, as thermal
emission from the surface of a neutron star carries signatures of itsgravitational field, which
may be used to infer its mass and radius. Detection of absorption lines corresponding to
elements on the neutron star atmosphere and measurement of their gravitational redshift
would provide rather accurate data. From the gravitational redshift at the surface of the
neutron star, the ratio between its mass and radius may be measured, providing a very strong
constraint on neutron star models. Such models give physics an experimentally testable
handle on properties of matter at (supra-)nuclear densities.

In particular, direct emission from the neutron star surface layers (the only source of
information on the physical conditions of the star) is only accessible in a handful of sources.
This is because the surface of old neutron stars (age > 106 yr) is too cold to emit X-rays, while
the radiation from young active radio pulsars (age < 104 yr) is dominated by nonthermal
emission from the magnetosphere surrounding the star. In the last decade ROSAT satellite
observations led to the discovery of seven dim sources, which were later associated with
radio-silent, isolated, middle-age (age 105–106 yr) neutron stars. They are characterized by
clean thermal emission at energies of about 0.1 keV without any trace of contamination from
a surrounding supernova remnant or magnetospheric activity. They are located within a
few hundred pc, close enough to be studied with the latest X-ray orbiting observatories and
therefore represent important targets for the study of neutron star surface emission.

Observations of neutron stars with detection of thermal emission are summarized in Table
1 and 2.

Table 1: Neutron stars with hydrogen atmospheres.

These tables display four inferred quantities: the spin-down age tsd,the surface temper-
ature T∞, the total thermal luminosity L∞ and the estimated distance d. The subscript
∞ refers to quantities observed at Earth which are redshifted relative to their values at the
stellar surface. Table 1 refers to models incorporating atmospheres dominated by hydro-
gen, while Table 2 presents properties inferred from black-body atmospheres. There are also
sources available with only upper limits. The estimation of T∞ and L∞ from the observed
spectral fluxes requires atmospheric modelling with the inclusion of three additional factors:
the composition of the atmosphere, the column density of X-ray absorbing material between
the star and Earth, and the surface gravitational redshift. The column density is important,
since the bulk of the emitted flux from neutron stars is absorbed by interstellar hydrogen,
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Table 2: Neutron Stars with black-body atmospheres. The uncertainty in the radius are
still too big for confrontation with theory.

before it reaches the Earth (Fig. 12, see also Fig. 12 ). Since no narrow spectral lines are
observed in the neutron stars in Table 1 and 2, the atmospheric composition of these stars
is unknown. Neutron star atmospheres can be either light-element (i.e. H and He) or heavy-
element dominated. The latter ones have spectral distributions more closely resembling a
black-body distribution, due to higher opacities of heavy elements. If the distance is known,
the neutron star emission radius can be inferred. It seems that the inferred neutron star
radii for stars younger than 100,000 years are consistent with canonical values only if they
are modelled with light-element atmospheres. On the other hand, stars older than 100,000
years have inferred radii close to the canonical range only if modelled with heavy-element
atmospheres. It seems therefore that the atmospheric composition of a neutron star evolves
from light elements to heavy elements on a time-scale of about 100,000 years.

interstellar absorption to nearby stars. These dim isolated neutron stars (DINs) are key
objects in compact object astrophysics. They offer a unique laboratory for investigating the
properties of matter under extreme conditions, such as the equation of state at supranuclear
densities, or the interaction of highly relativistic plasmas with radiation in the presence of
gigaor teragauss magnetic fields. Detailed X-ray spectra of DINSs have been recently obtained
with Chandra and XMMNewton, and show quite unexpected characteristics. The prototype
of the class, RX J1856.53754, exhibitsa featureless spectrum extremely close to a pure black-
body (Fig. 12). Broad absorption features have been detected in four pulsating sources with
evidence of a spectral variation with phase. Very recently, spectral evolution on timescale of
years have been reported for the second most luminous source, RX J0720.43125. In addition,
when detected the optical counterpart lies a factor about 510 above the extrapolation of
the X-ray black-body at optical wavelengths. All these new findings represent a challenge
for conventional atmospheric models, typically based on surface temperature distributions
induced by a dipolar magnetic field. interstellar absorption to nearby stars. These dim
isolated neutron stars (DINs) are key objects in compact object astrophysics. They offer a
unique laboratory for investigating the properties of matter under extreme conditions, such as
the equation of state at supranuclear densities, or the interaction of highly relativistic plasmas
with radiation in the presence of gigaor teragauss magnetic fields. Detailed X-ray spectra
of DINSs have been recently obtained with Chandra and XMMNewton, and show quite
unexpected characteristics. The prototype of the class, RX J1856.53754, exhibits a featureless
spectrum extremely close to a pure black-body (Fig. 12). Broad absorption features have been
detected in four pulsating sources with evidence of a spectral variation with phase. Very
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Figure 12: The X-ray spectrum of the isolated neutron star RJ 18563754 for (a) a twocompo-
nent model and (b) a model with continuous temperature distribution. The X-ray and optical
data show no spectral features and are best fitted with a two-component black-body model
with kTX

∞, bb ≃ 63.5 eV and RX
∞,bb ≃ 4.4(d/120 pc) km for the hot X-ray emitting region,

and kT opt
∞,bb < 33 eV and Ropt

∞,bb > 17(d/120 pc) km for the rest of the neutron star surface
responsible for the optical flux. The optical emission is then the RayleighJeans spectrum
emitted by the neutron star surface and the hot spot. The neutron star radius would be 14
km. This would rule out quark stars.
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recently, spectral evolution on timescale of years have been reported for the second most
luminous source, RX J0720.43125. In addition, when detected the optical counterpart lies
a factor about 510 above the extrapolation of the X-ray black-body at optical wavelengths.
All these new findings represent a challenge for conventional atmospheric models, typically
based on surface temperature distributions induced by a dipolar magnetic field.

3.1 Compact Stellar Radii from Thermal Emission

The observed temperature Teff,∞ determines the observed luminosity:

L∞ = 4π SBT 4
eff,∞ R2

∞ = L α2(R) (15)

The last equality follows from the fact that the energy is redshifted and time is also redshifted
with respect to the timescale at the surface of the star, dt∞ = dτ/α(R). The BB spectrum
is redshifted when it leaves the gravitational field of the star, i.e.

Teff,∞ = α(R)Teff =
√

1 − 2GM/(c2R) · Teff (16)

Since L = 4π R2σSBT 4
eff , this has the consequence that the observed radius at infinity is ap-

parently bigger than the true radius of the neutron star R∞ = R/α(R) ≃ R/
√

1 − 2GM/(c2R).
An intrinsic radius for a neutron star of 1.4 solar masses corresponds to an observed radius
between 13 and 14.5 km. If massive neutron stars would have quark cores, we would expect
observed radii between 12 and 13 km.
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Lecture Notes 7

1 Quasi Periodic Oscillations

The principal motivation for studying accreting neutron stars and black
holes is that these objects provide a unique window on the physics of
strong gravity and dense matter. One of the most basic expressions
of the compactness of these compact objects is the short (0.1–1msec)
dynamical time scale characterizing the motion of matter under the in-
fluence of gravity near them. Millisecond variability will naturally occur
in the process of accretion of matter onto a stellar-mass compact object,
an insight that dates back to at least Shvartsman (1971). For example,
hot clumps orbiting in an accretion disk around black holes and neu-
tron stars will cause quasi-periodic variability on time scales of about a
millisecond (Sunyaev 1973). Accreting low-magnetic field neutron stars
will reach millisecond spin periods, which can be detected when asym-
metric emission patterns form on the star’s surface during X-ray bursts
(Radhakrishnan & Srinivasan 1984, Alpar et al. 1982; Shara 1982, Livio
& Bath 1982, see also Joss 1978). These early expectations have finally
been verified in a series of discoveries with NASA’s Rossi X-Ray Timing
Explorer (RXTE; Bradt et al. 1993) within 2.5 years after launch on 30
December 1995.

Here we will concentrate on quasi-periodic millisecond oscillations
in X-ray flux with frequencies exceeding 102.5 Hz, but we also discuss
their relations to slower variability and X-ray spectral properties. The
term quasi-periodic distinguishes these phenomena from the periodic
(or coherent) millisecond oscillations seen for example in accreting X-ray
pulsars, which reflect the spin rate of the neutron star. Quasi periodic
oscillations have so far been seen nearly exclusively from low-magnetic-
field neutron stars and black-hole-candidates.

Accreting neutron stars and black holes occur in X-ray binaries (e.g.,
Lewin et al. 1995a). In these systems matter is transferred from a
normal (’donor’) star to a compact object. Thermal X-rays powered
by the gravitational potential energy released are emitted by the inner
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regions of the accretion flow and, if present, the neutron star surface.
For a compact object with a size of order 101 km, 90% of the energy is
released in the inner ∼102 km. It is with this inner emitting region that
we shall be mostly concerned here. Because accreting low-magnetic-field
neutron stars are mostly found in low-mass X-ray binaries (in which the
donor star has a mass of <1M⊙) these systems will be the ones we focus
on.

The mass transfer usually occurs by way of an accretion disk around
the compact object. In the disk the matter moves in near-Keplerian
orbits, i.e., with an azimuthal velocity that is approximately Keplerian
and a radial velocity much smaller than this. The disk has a radius of
105−7 km, depending on the binary separation. The geometry of the flow
in the inner emitting regions is uncertain. In most models for accretion
onto low-magnetic-field neutron stars (e.g., Miller et al. 1998a) at least
part of the flow extends down into the emitting region in the form of a
Keplerian disk. It is terminated either at the radius R of the star itself,
or at a radius rin somewhat larger than R, by for example the interaction
with a weak neutron-star magnetic field, radiation drag, or relativistic
effects. Within rin the flow is no longer Keplerian and may or may not
be disk-like. Both inside and outside rin matter may leave the disk and
either flow in more radially or be expelled. Particularly for black holes
advective flow solutions are discussed where the disk terminates and
the flow becomes more spherical at a much larger radius (e.g., Narayan
1997).

Whatever the geometry, it is clear that as the characteristic velocities
near the compact object are of order (GM/R)1/2 ∼ 0.5c, the dynamical
time scale, the time scale for the motion of matter through the emit-
ting region, is short; τdyn ≡ (r3/GM)1/2∼0.1ms for r=10 km, and ∼2ms
for r=100 km near a 1.4M⊙ neutron star, and ∼1ms at 100 km from a
10M⊙ black hole. So, the significance of millisecond X-ray variability
(both periodic and quasi-periodic) from X-ray binaries is clear: mil-
liseconds is the natural time scale of the accretion process in the X-ray
emitting regions, and hence strong X-ray variability on such time scales
is nearly certainly caused by the motion of matter in these regions. Or-
bital motion, neutron-star spin, disk- and neutron-star oscillations are
all expected to happen on these time scales.
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The inner flow is located in regions of spacetime where strong-field
general-relativity is required to describe the motion of matter. For that
reason one expects to detect strong-field general-relativistic effects in
these flows, such as for example the existence of a region where no stable
orbits are possible (see for example the ISCO on Shapiro & Teukolsky).
The precise interactions between the elementary particles in the interior
of a neutron star which determine the equation of state (EOS) of supra-
nuclear-density matter are not known. Therefore we can not confidently
predict the radius of a neutron star of given mass, or the maximum spin
rate or mass of neutron stars (e.g., Cook et al. 1994). So, by measuring
these macroscopic quantities one constrains the EOS and tests basic
ideas about the properties of elementary particles. In summary, the
main motivation for studying millisecond variations in X-ray binaries is
that their properties depend on untested, or even unknown, properties
of spacetime and matter.

Three different millisecond phenomena have now been observed in
X-ray binaries. Historically, the first to be discovered were the twin
kilohertz quasi-periodic oscillations (kHz QPOs), widely interpreted now
as due to orbital motion in the inner accretion flow. Then came the
burst oscillations, probably due to the spin of a layer in the neutron
star’s atmosphere in near-corotation with the neutron star itself. Finally
RXTE detected the first true spin frequency of an accreting low-magnetic
field neutron star, the long-anticipated accreting millisecond pulsar.

Here we will examine the kHz QPO phenomenon, in the mostly un-
charted territory of the innermost accretion flows around neutron stars
and black holes, which obviously is “where the monsters are”, but also
where the greatest rewards wait.

2 Techniques

Most of the variability measurements discussed here rely on Fourier anal-
ysis of X-ray count-rate time series with sub-millisecond time resolution
(van der Klis 1989). The reason why Fourier analysis is used is due to
the low count rate and the short timescales at which these X-ray bi-
naries are observed. The brightest X-ray sources show count rates not
exceeding 10000 ct/s. Therefore on the timescales of interest (∼ 1 ms)
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the X-ray lightcurve will contain about 10 photons in the best case (see
for example Fig 1).

Figure 1: X-ray lightcurve observed with the Proportional Counter Array onboard RXTE.
The X-ray source is “Sco X-1”, the brightest persistent X-ray source known in the sky. It
is believed to be an accreting neutron star system in a Low Mass X-ray Binary. The X-ray
lightcurve shows a count rate of a few tens of thousands photons per seconds. Therefore
X-ray variability at sub-ms timescales cannot be directly observed at such short timescales.
Sco X-1 is one of the sources that exibit the kHz QPO phenomenon. As can be verified,
there is no signature of such fast variability in the lightcurve since the kHz QPOs can only
be observed in a power spectrum by using Fourier techniques.

Typical X-ray sources show count rates of ∼ 100 ct/s, meaning a
total of less than a photon in 1 ms. Therefore any study of X-ray flux
variability at ms timescales is impossible given the actual count rates
(which depend on the source brightness but also on the detector capa-
bility). Therefore the best way to proceed is to study these timescales
with Fourier techniques.

3 Timing

Fourier analysis. A number of variability components or power-spectral
components together make up the power spectrum. An aperiodic com-
ponent by definition covers several, usually many, frequency resolution
elements. Broad structures are called noise and narrow features quasi-
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periodic oscillations (QPOs); ’broad-band noise’ and ’QPO peaks’ are
common terms (Fig. 2). Least-squares fitting techniques are used to
measure these components. When a series of power spectra is calculated
from consecutive chunks of data, usually the components change: they
move through the power spectrum (change frequency from one power
spectrum to the next), vary in width and strength, etc., but they remain
identifiable as the changes are gradual. This is the empirical basis for
the concept of a power-spectral component. The shortest time scale on
which changes can typically be followed is seconds to minutes.

Figure 2: Power spectrum of an X-ray binary. It can be clearly seen the power law noise at
low frequencies, the twin kHz QPOs and some extra noise at intermediate frequencies. The
two QPO like features between 10-100 Hz are the so called Horizontal Branch QPOs, which
often appear in power spectra and whose origin is still unknown.

The signal in the time series is not completely specified by the power
spectrum (and the signals are usually too weak to recover the Fourier
phases). The same QPO peak could be due to, e.g., a damped harmonic
oscillator, randomly occurring short wave trains, a frequency-modulated
oscillation, an autoregressive signal, white noise observed through a nar-
row passband filter or even a closely spaced set of periodic signals.
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Power-law noise is noise that (in the frequency range considered)
follows a power law Pν ∝ ν−α. The power-law index (also ’slope’) α

is typically between 0 and 2; for |α| > 2 Fourier analysis suffers from
power leakage, so measurements of noise steeper than that are suspect
(e.g., Bracewell 1986, Deeter 1984). ’1/f noise’ has α = 1, and white
noise is constant (α = 0). Red noise is a term variously used for either
α = 2 power-law noise or any kind of noise whose Pν decreases with ν.

A quasi-periodic oscillation (QPO) is a finite-width peak in the power
spectrum. It can usually be described with a Lorentzian Pν ∝ λ/[(ν −

ν0)
2 +(λ/2)2] with centroid frequency ν0 and full width at half maximum

(FWHM) λ. This is the power spectrum of an exponentially damped
sinusoid x(t) ∝ e−t/τ cos(2πν0t), but the underlying signal may well be
different from this. λ is related to the coherence time τ = 1/πλ of the
signal, and is often reported in terms of the quality factor Q ≡ ν0/λ,
a measure for the coherence of the QPO. Conventionally, signals with
Q > 2 are called QPOs and those with Q < 2 peaked noise. A sharp
QPO peak is one with high Q.

The strength (variance) of a signal is proportional to the integrated
power P =

∫

Pνdν of its contribution to the power spectrum, and is
usually reported in terms of its fractional root-mean-squared (rms) am-
plitude r ∝ P 1/2, which is a measure for signal amplitude as a fraction of
the total source flux. It is often expressed in percent, as in “2% (rms)”.

The signal-to-noise of a weak QPO or noise component is nσ =
1
2Ixr

2(T/λ)1/2 (van der Klis 1989b, see van der Klis 1998 for more de-
tails), where Ix is the count rate and T the observing time (assumed
≫ 1/λ). As nσ is proportional to signal amplitude squared, if a clear
power-spectral feature “suddenly disappears” it may have only decreased
in amplitude by a factor of two (and gone from, say, 6 to 1.5σ).

Power spectra are in practice presented in a variety of ways, each more
suitable to emphasize particular aspects (displaying either Pν or νPν,
linearly or logarithmically, subtracting the white Poisson background
noise or not; e.g., Figs. 3).
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Figure 3: (a) Twin kHz QPOs in Sco X-1 (van der Klis et al. 1997), (b) hectohertz QPO in
4U 0614+09, (c) HF QPOs in GRO J1655–40 (Strohmayer 2001a).

4 Spectroscopy

Variations in broad-band (∆E/E > 0.1, usually continuum-dominated)
X-ray spectral shape usually just become detectable on the same seconds
to minutes time scales on which power-spectral changes are detectable.
Two different techniques of broad-band spectroscopy are used to diag-
nose these changes: multi-band photometry and spectral fitting. The
spectral band used varies somewhat but is usually in the 1–60 keV range
and nearly always covers at least the 3–8 keV band.

Photometric method One approach to quantifying broad-band X-
ray spectral shape uses X-ray colors. An X-ray color is a ’hardness’ ratio
between the photon counts in two broad bands; it is a rough measure
for spectral slope. By calculating two X-ray colors (a hard color in a
higher energy band and a soft color in a lower band) as a function of
time, a record is obtained of the broad-band X-ray spectral variations
that is well-matched to the power-spectral variations. Plotted vs. one
another in a color-color diagram (CD), one can observe the source to
move through the diagram and, nearly always, create a pattern. It is
then possible to study the relation between timing and location in the
CD. A hardness-intensity diagram (HID) or color-intensity diagram is
a similar diagram with a color vs. ’intensity’; X-ray intensity in this
context is nothing but a count rate in some broad X-ray spectral band.
Figs. 4 and 5 provide examples of CD and HID patterns. Whether CD
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or HID presents the ’cleanest’ pattern depends on source, and on the
quality of the data. There are distinct advantages to working with the
logarithm of colors and intensities, like magnitudes in the optical, but
this is not general practice.

Banana

Lower Banana

Island State

Extreme Island State

S =1

Lower Left

z

Horizontal Branch

zS =2

Banana
Upper 

Upper Banana

Lower Banana

Normal Branch
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a b c

Figure 4: Spectral branches of neutron stars. (a) CD of the atoll source 4U 1608−52, (b) CD
of the ’GX’ atoll source GX 9+1, and (c) HID of the Z source GX 340+0. RXTE/PCA data;
soft colour 3.5–6/2–3.5 keV, hard colour 9.7–16/6–9.7 keV, intensity: 2–16 keV, all normalized
to Crab. Conventional branch names are indicated; Compare van Straaten et al. (2003),
Reerink et al. (2004), Jonker et al. (2000a).

For distinguishing between source states the photometric method
combined with timing performs well, and the method provides excel-
lent sensitivity to subtle spectral variations. However, this is at the
expense of detector dependence. All X-ray detectors are different and
change over time, and contrary to optical photometry, in X-rays there
is only one bright standard star (Crab). For the low spectral resolution
detectors typically used for timing (proportional counters) it is not pos-
sible to completely correct X-ray colors for the detector response: In the
absence of apriori knowledge of the intrinsic spectral shape all correction
methods intended to derive ’intrinsic’ colors (scaling by Crab colors, un-
folding through the detector response matrix either directly or by fitting
an arbitrary model) are mathematically imperfect (Kahn & Blisset 1980,
Kuulkers et al. 1994, Kuulkers 1995, Done & Gierliński 2003).

Spectral fitting method There are considerable interpretative ad-
vantages in describing the X-ray spectral variations instead in terms of
physical models fitted to the observed spectra. The drawback is that this
involves a description of spectral shape in terms of more numbers (the
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Figure 5: Hardness-intensity diagrams of the black hole GX 339–4 and the neutron-star
LMXB transient Aql X-1. Note the orientation of these diagrams, which is similar to that of
Fig. 4. Compare Belloni (2004), Reig et al. (2004).

spectral parameters) than just two X-ray colors, and that the correct
models are unknown. This, plus the tendency towards spurious results
related to statistical fit-parameter correlations masking true source varia-
tions, usually means that to obtain sensible results, fitting requires longer
integration times than the time scale on which we see the power spec-
tra, and the X-ray colors, change, and that measured parameter-value
changes obtained are hard to interpret. Nevertheless, for sufficiently long
integration times, and particularly in the case of the black-hole candi-
dates, where the X-ray spectral variations are clearer than in neutron
stars, this approach has met with some success. Because both methods
have limitations, in practice the interpretation of X-ray spectral varia-
tions tends to occur in a back-and-forth between CD/HIDs and spectral
fitting. Techniques such as plotting the predicted colors of model spec-
tra in CDs together with the data, fitting spectra obtained by averaging
data collected at different epochs but in the same part of the CD, and
approximate intrinsic colors (e.g., Belloni et al. 2000, Done & Gierliński
2003), are all being employed to make the link between the two methods.

5 Source types

Different sources exhibit similar patterns of timing and spectral proper-
ties, allowing to group them into a number of source types. Both spec-
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troscopy and timing, preferably in several source states, are necessary
to reliably identify source type. The primary distinction is not between
neutron stars and black holes but between high and low magnetic-field
strengths. Black holes and low magnetic-field (<∼1010 G) neutron stars
potentially have gravity-dominated flows down to the strong-field region
(although radiative stresses can also be important). It is these objects,
mostly found in low-mass X-ray binaries (LMXBs), that we shall be
mostly concerned with.

5.1 Neutron stars vs. black holes

A neutron star is only a few times larger than its Schwarzschild radius,
so accretion onto black holes and neutron stars is expected to show sim-
ilarities. Indeed, based on just the inner-flow diagnostics (timing and
spectrum), the distinction between neutron stars and black holes is no-
toriously difficult to make, with some examples of black-hole candidates
turned neutron stars (e.g., Cir X-1, Jones et al. 1974, Tennant et al. 1986;
V0332+53, Tanaka et al. 1983, Stella et al. 1985; GS 1826–238, Tanaka
1989, Ubertini et al. 1999; 4U0142+61, White & Marshall 1984, Israel
et al. 1994), and in practice it is not easy to prove a compact object is
a black hole. There are two levels of proof: (i) showing that, assum-
ing general relativity, the compact object must be a black hole, and (ii)
showing that such an object indeed has the properties general relativity
predicts for a black hole. For (i) it is sufficient to prove that a mass is
concentrated within its Schwarzschild radius; currently, this mostly re-
lies on dynamical mass estimates combined with theoretical arguments
about the maximum mass of a neutron star (e.g., Srinivasan 2002) and
not on direct, empirical measurements of radius. For (ii) it is necessary
to observe the interaction of the compact object with its surroundings,
empirically map out its exterior spacetime, and demonstrate properties
such as extreme frame dragging, the existence of an innermost stable
orbit, and an event horizon.

In recent work, for well-studied sources, clear differences are discerned
between the patterns of correlated spectral and timing behaviour of neu-
tron stars and black holes which agree with distinctions based on X-ray
bursts, pulsations, and dynamical mass estimates. In particular the most
rapid variability, presumably that produced closest to the compact ob-
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ject and most affected by its properties, is clearly quite different between
neutron stars and black-hole candidates. Evidently we are learning to
distinguish between black holes and neutron stars based on the prop-
erties of the flow in the strong-field gravity region, so there is progress
towards the goal of testing general relativity. On the other hand, re-
markable spectral and timing similarities exist between certified neutron
stars and black-hole candidates, particularly in low luminosity states. To
demonstrate the existence of black holes in the sense of general relativity
based on an understanding of the accretion phenomena near them is a
goal that has not yet been reached. The study of rapid X-ray variabil-
ity of low-magnetic field compact objects in X-ray binaries is one of the
programs contributing towards this end. Both the actual measurement
of compact-object radius, which is part of a level (i) proof, as well as
level (ii) proofs are addressed by the research described in this chapter:
timing to diagnose motion very near compact objects. I shall use the
term black hole both for objects whose black-hole candidacy is based
on a measured mass as well as for those whose patterns of timing and
spectral behavior put them into the same phenomenological category as
these objects.

5.2 Low magnetic-field object types

The low magnetic-field neutron-star systems are subdivided into Z sources,
atoll sources (Hasinger & van der Klis 1989) and what I shall call the
’weak LMXBs’. These three main sub-types are closely related. Z
sources are the most luminous (Fig. 6), and accrete at an apprecia-
ble fraction of the Eddington critical rate (perhaps 0.5–1 LEdd). Atoll
sources, many of which are X-ray burst sources, cover a much wider range
in luminosities, from perhaps 0.001LEdd (much lower in transients, but
below this level timing becomes difficult) all the way up to the range
of the Z sources (e.g., Ford et al. 2000; Lx overlaps may well occur;
distances are uncertain). Ordinary atoll sources are usually in the 0.01–
0.2 LEdd range, while the ’GX’ atoll sources in the galactic bulge usually
hover at the upper end (perhaps 0.2–0.5LEdd), and the weak LMXBs at
the lower end (<0.01LEdd) of that range. Weak LMXBs comprise the
overlapping groups of faint burst sources, millisecond pulsars and low-
luminosity transients; many of them appear to be just atoll sources stuck
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Figure 6: Luminosities attained by Z sources, GX atoll sources, ordinary atoll sources and
weak LMXBs, respectively, as well as by neutron-star and black-hole transients. The extent
of the Lx overlaps between these source types is undecided in detail, but those shown here
are likely.

at low Lx. Some faint LMXBs have luminosities that are not well known
due to uncertain distances or emission anisotropies (e.g., in dippers), but
many of these are probably weak as well.

While nearly all LMXBs whose X-ray emission is persistent contain a
neutron star, nearly all with a black hole (and many with a neutron star
as well) are transients, showing intermittent activity intervals called out-
bursts usually lasting weeks to months and separated by long quiescent
intervals. The black holes have no well-defined subdivisions; although
one might expect differences in spin (and hence, frame dragging), ac-
cretion mode (wind or Roche-lobe overflow) or between transient and
persistent systems to show up, none of these lead to obvious differences
in the observable properties attributable to the inner flow. Some black-
hole transients remain in the low hard state during their entire outburst
(e.g., Nowak 1995, Brocksopp 2004), but this can vary from one outburst
to another (e.g., Belloni et al. 2002b).

6 Black Hole QPOs

The fastest black-hole phenomenon are the high-frequency (HF) QPOs
(Remillard et al. 1999). Frequencies range from 100 to 450Hz, and
are reported to usually occur at fixed values different in each source,
perhaps inversely proportional to black-hole mass. In Black Hole X-ray
binaries the observations of kHz QPO has never occurred and the fastest
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phenomena reach ∼ 450 Hz.
Although their properties are very different, suggesting different un-

derlying physics explains them, black-hole HF and neutron-star kHz
QPOs might possibly still be reconciled within a single explanation. The
differences are clear: the neutron-star QPOs (i) have strongly tunable
frequencies, (ii) come in pairs with a separation perhaps related to the
stars spin and (iii) have low harmonic content, while the black-hole ones
(i) have a much more stable frequency, and (ii) are single, but (iii) with
high harmonic content. Note: the term “harmonic content” refers to the
fact that some excess power is observed at values which are twice the
peak frequency of the main QPO (and sometimes even higher multiples).

To reconcile these observations one might postulate that (i) the vari-
able frequencies in neutron stars occur because the phenomenon occurs
at a variable (e.g., inner disk) radius, set by interaction of the disk flow
with either a magnetic field or radiation from the stellar surface, while
in black holes, in the absence of these influences, the same phenomenon
occurs at a more constant radius (perhaps, close to the ISCO), (ii) the
second QPO occurs only in neutron stars because it is due to an inter-
action with the spin, and (iii) the high harmonic content in blackhole
QPOs is due to relativistic effects on the flow and its emission that be-
come important only near the ISCO (e.g, as a simple example, extreme
Doppler boosting near the ISCO of a spinning black hole).

7 Kilohertz quasi-periodic oscillations

The kilohertz quasi-periodic oscillations (kHz QPOs) were discovered at
NASA’s Goddard Space Flight Center in February 1996, just two months
after RXTE was launched (in ScoX-1: van der Klis et al. 1996a,b,c,
and 4U 1728−34: Strohmayer et al. 1996a,b,c; see van der Klis 1998
for a historical account). Two simultaneous quasi-periodic oscillation
peaks (“twin peaks”) in the 300–1300Hz range and roughly 300Hz apart
(Fig. 7) occur in the power spectra of low-mass X-ray binaries contain-
ing low-magnetic-field neutron stars of widely different X-ray luminosity
Lx. The frequency of both peaks usually increases with X-ray flux. In
4U 1728−34 the separation frequency of the two kHz peaks is close to
νburst (Strohmayer et al. 1996b,c). This commensurability of frequencies
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provides a powerful argument for a beat-frequency interpretation.

Figure 7: Twin kHz peaks in Sco X-1 (left; van der Klis et al. 1997b) and 4U 1608−52 (right;
Méndez et al. 1998b).

7.1 Orbital and beat frequencies

Orbital motion around a neutron star occurs at a frequency of

νorb =

(

GM

4π2r3
orb

)1/2

≈ 1200 Hz
( rorb

15 km

)−3/2

m
1/2
1.4 ,

and the corresponding orbital radius is

rorb =

(

GM

4π2ν2
orb

)1/3

≈ 15 km
( νorb

1200 Hz

)−2/3

m
1/3
1.4 ,

where m1.4 the star’s mass in units of 1.4M⊙ (Fig. 8). In general rela-
tivity, no stable orbital motion is possible within the innermost stable
circular orbit (ISCO), RISCO = 6GM/c2 ≈ 12.5m1.4 km . The frequency
of orbital motion at the ISCO, the highest possible stable orbital fre-
quency, is νISCO ≈ (1580/m1.4) Hz.

These expressions are valid for a Schwarzschild geometry, i.e., out-
side a non-rotating spherically symmetric neutron star (or black hole).
Corrections to first order in j = cJ/GM 2, where J is the neutron-star
angular momentum have been given by, e.g., Miller et al. (1998a) and
can be several 10%. For more precise calculations see Morsink & Stella
(1999).

In spin-orbit beat-frequency models some mechanism produces an in-
teraction of νorb at some preferred radius in the accretion disk with the
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Figure 8: A 10-km radius, 1.4M⊙ neutron star with the corresponding innermost circular
stable orbit (ISCO; dashed circles) and orbits (drawn circles) corresponding to orbital fre-
quencies of 1200 and 500 Hz, drawn to scale.

neutron star spin frequency νs, so that a beat signal is seen at the fre-
quency νbeat = νorb−νs. As νbeat is the frequency at which a given particle
orbiting in the disk overtakes a given point on the spinning star, it is the
natural disk/star interaction frequency. In such a rotational interaction
(with spin and orbital motion in the same sense) no signal is produced
at the sum frequency νorb + νs (it is a “single-sideband” interaction).

7.2 Early interpretations

It was immediately realized that the observed high frequencies of kHz
QPOs could arise in orbital motion of accreting matter very closely
around the neutron star, or in a beat between such orbital motion and the
neutron-star spin (van der Klis et al. 1996a, Strohmayer et al. 1996a;
some of the proposals to look for such rapid QPOs with RXTE had
in fact anticipated this). A magnetospheric spin-orbit beat-frequency
model (Alpar & Shaham 1985, Lamb et al. 1985) was already in use
in LMXBs for slower QPO phenomena so when three commensurable
frequencies were found in 4U 1728−34, a beat-frequency interpretation
was immediately proposed (Strohmayer et al. 1996c). Let us call ν2

the frequency of the higher-frequency (the “upper”) peak and ν1 that
of the lower-frequency kHz peak (the “lower peak”). Then the beat-
frequency interpretation asserts that ν2 is νorb at some preferred ra-
dius in the disk, and ν1 is the beat frequency between ν2 and νs, so
ν1 = νbeat = νorb − νs ≈ ν2 − νburst, where the approximate equality fol-
lows from νburst ≈ νs. That only a single sideband is observed is a strong
argument for a rotational interaction. Later this was worked out in de-
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tail in the form of the “sonic point beat-frequency model” by Miller et al.
(1996, 1998a), where the preferred radius is the sonic radius (essentially,
the inner edge of the Keplerian disk).

The beat-frequency interpretation implies that the observed kHz QPO
peak separation ∆ν = ν2 − ν1 should be equal to the neutron star spin
frequency νs, and should therefore be constant and nearly equal to νburst.
It turned out that ∆ν is not actually exactly constant nor precisely
equal to νburst and this triggered the development of other models for
the kHz QPOs. Stella & Vietri (1998) noted that the frequency νLF

of low-frequency QPOs in the 15–60Hz range that had been known in
the Z sources since the 1980’s (cf. van der Klis 1995), and that were
being discovered with RXTE in the atoll sources as well is approximately
proportional to ν2

2. This triggered a series of papers (Stella & Vietri
1998, 1999, Stella et al. 1999b) together describing what is now called
the “relativistic precession model”, where ν2 is the orbital frequency
at some radius in the disk and ν1 and νLF are frequencies of general-
relativistic precession modes of a free particle orbit at that radius. With
the exception of the photon bubble model (Klein et al. 1996b), all models
are based on the interpretation that one of the kHz QPO frequencies is
an orbital frequency in the disk.

7.3 Dependence on source state and type

More than twenty sources have now shown kHz QPOs. Sometimes only
one peak is detectable, but 18 of these sources have shown two simulta-
neous kHz peaks; the exceptions with only a single peak are the little-
studied XTE J1723−376 and EXO 0748−676. Tables 1 and 2 summarize
the results. There is a remarkable similarity in QPO frequencies and
peak separations across a great variety of sources.

However, at a more detailed level there turn out to be differences be-
tween the different source types. The two main types are the Z sources
and the atoll sources (Hasinger & van der Klis 1989, see van der Klis
1989a, 1995a,b for reviews). Z sources are named after the roughly Z-
shaped tracks they trace out in X-ray color-color and hardness-intensity
diagrams on a time scale of hours to days (Fig. 9). They are the most
luminous LMXBs, with X-ray luminosity Lx near the Eddington lumi-
nosity LEdd. Atoll sources produce tracks roughly like a wide U or C
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Table 1: Observed frequencies of kilohertz QPOs in Z sources

Source ν1 ν2 ∆ν νburst References
(Hz) (Hz) (Hz) (Hz)

ScoX-1 565 870 307±5 Van der Klis et al. 1996a,b,c,1997b
845 1080 237±5

1130
GX5−1 215 505 Van der Klis et al. 1996e

660 890
298±11

Wijnands et al. 1998c
700

GX17+2 645 Van der Klis et al. 1997a
480 785 Wijnands et al. 1997b
780 1080

294±8

CygX-2 730 Wijnands et al. 1998a
530 855
660 1005

346±29

GX340+0 200 535 Jonker et al. 1998, 1999c
565 840

339±8

625
GX349+2 710 980 266±13 Zhang et al. 1998a

1020a Kuulkers & van der Klis 1998

Values for ν1 and ν2 were rounded to the nearest 5, for νburst to the nearest 1Hz. Entries in one column not separated
by a horizontal line indicate ranges over which the frequency was observed or inferred to vary; ranges from different
observations were combined assuming the ν1, ν2 relation in each source is reproducible (no evidence to the contrary
exists). Entries in one uninterrupted row refer to simultaneous data (except for νburst values). Values of ∆ν straddling
two rows, or adjacent to a vertical line refer to measurements made over the range of frequencies indicated. Note: a

Marginal detection.

(e.g., Fig. 9) which are somewhat reminiscent of a geographical map of
an atoll because in the left limb of the U the motion through the diagram
becomes slow, so that the track is usually broken up by observational
windowing into “islands”. The bottom and right-hand parts of the U
are traced out in the form of a curved “banana” branch on a time scale
of hours to a day. In a given source, the islands correspond to lower flux
levels than the banana branch. Most atoll sources are in the 0.01–0.2
LEdd range; a group of four bright ones (GX 3+1, GX 9+1, GX 13+1 and
GX 9+9) that is nearly always in the banana branch is more luminous
than this, perhaps 0.2–0.5LEdd (the distances are uncertain). Most tim-
ing and spectral characteristics of these sources depend in a simple way
on position along the Z or atoll track. So, the phenomenology is essen-
tially one-dimensional. A single quantity, usually referred to as “inferred
accretion rate”, varying on time scales of hours to days on the Z track
and the banana branch, and more slowly in the island state must govern
most of the phenomenology.

In all Z sources and in 4U 1728−34 the kHz QPOs are seen down to
the lowest inferred Ṁ levels these sources reach. The QPOs always be-
come undetectable at the highest Ṁ levels. In the atoll sources, where
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Table 2: Observed frequencies of kilohertz QPOs in atoll sources

Source ν1 ν2 ∆ν νburst References
(Hz) (Hz) (Hz) (Hz)

4U 0614+09 450 Ford et al. 1996, 1997a,b; Van der Klis
et al. 1996d; Méndez et al. 1997;
Vaughan et al. 1997,1998; Kaaret et
al. 1998; van Straaten et al. 1999

418 765
825 1160

312±2

1215
1330

EXO0748−676 695 J. Homan 1999, in prep.
4U 1608−52 415 Van Paradijs et al. 1996; Berger et al.

1996; Yu et al. 1997; Kaaret et al.
1998; Vaughan et al. 1997,1998;
Méndez et al. 1998a,b, 1999; Méndez
1999; Markwardt et al. 1999b

440 765 325±7
475 800 326±3

865 1090b 225±12b

895
4U1636−53 830 Zhang et al. 1996a,b,1997a; Van der

Klis et al. 1996d; Vaughan et al.
1997,1998; Zhang 1997; Wijnands et
al. 1997a; Méndez et al. 1998c;
Méndez 1999; Markwardt et al. 1999b;
Kaaret et al. 1999a

900 1150

950 1190 251±4b 291,582
1230

1070
4U1702−43 625 Markwardt et al. 1999a,b

655 1000b 344±7b

700 1040b 337±7b 330

770 1085b 315±11b

902
4U1705−44 775 1075a 298±11 Ford et al. 1998a

870
XTEJ1723−376 815 Marshall & Markwardt 1999
4U1728−34 325 Strohmayer et al. 1996a,b,c; Ford &

van der Klis 1998; Méndez & van der
Klis 1999; Méndez 1999; Markwardt et
al. 1999b; di Salvo et al. 1999

510 845
875 1160 349±2 364
920 279±12

KS 1731−260 900 1160 260±10 524 Wijnands & van der Klis 1997
1205

4U1735−44 630 980 341±7 Wijnands et al. 1996a, 1998b; Ford et
al. 1998b730 1025 296±12

900a 1150 249±15
1160

4U1820−30 655 Smale et al. 1996, 1997; Zhang et al.
1998b; Kaaret et al. 1999b; Bloser et
al. 1999

500 860 358±42
795 1075 278±11

1100
AqlX-1 670 Zhang et al. 1998c; Cui et al. 1998a;

Yu et al. 1999; Reig et al. 1999; M.
Méndez et al. 1999 in prep.

930
1040a 241±9a

549

4U1915-05 820 Barret et al. 1997,1998; Boirin et al.
1999515

560 925
655 1005 348±11
705a 1055
880

1265a

XTEJ2123−058 845 1100 255±14 Homan et al. 1998b,1999a; Tomsick et
al. 1999855 1130 276±9

870a 1140 270±5a

Caption: see Table 1. Notes: a Marginal detection. b Shift and add detection method, cf. Méndez et al. (1998a).
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Figure 9: Left: X-ray color-color diagram of the atoll source 4U 1608−52. (Méndez et al.
1999) Right: X-ray hardness vs. intensity diagram of the Z source GX 340+0. (after Jonker
et al. 1999c). Conventional branch names are indicated. Color is the log of a count rate ratio
(3.5–6.4/2.0–3.5 and 9.7–16.0/6.4–9.7 keV for soft and hard color respectively); intensity is
in the 2–16 keV band. kHz QPO detections are indicated with filled symbols.

the count rates are higher at higher inferred Ṁ , this can not be a sensi-
tivity effect. In most atoll sources, the QPOs are seen in the part of the
banana branch closest to the islands, i.e., near the lower left corner of the
U (Fig. 9); that they are often not detected in the island state may be
related to low sensitivity at the low count rates there, but in one island in
4U 0614+09 the undetected lower kHz peak is really much weaker than
at higher inferred Ṁ (Méndez et al. 1997). No kHz QPOs have been
seen in the four bright atoll sources (Wijnands et al. 1998d, Strohmayer
1998, Homan et al. 1998a), perhaps because they do not usually reach
this low part of the banana branch, and in several faint LMXBs, proba-
bly also atoll sources in the island state (SAX J1808.4−3658; Wijnands
& van der Klis 1998c and XTE J1806−246; Wijnands & van der Klis
1999b, SLX 1735−269; Wijnands & van der Klis 1999c, 4U 1746−37;
Jonker et al. 1999a, 4U 1323−62; Jonker et al. 1999b, 1E 1724−3045,
SLX 1735−269 and GS 1826−238; Barret et al. 1999).

The QPO frequencies increase when the sources move along the tracks
in the sense of increasing inferred Ṁ (this has been seen in more than a
dozen sources, and no counterexamples are known). On time scales of
hours to a day increasing inferred Ṁ usually corresponds to increasing
X-ray flux, so on these time scales kHz QPO frequency usually increases
with flux. When flux systematically decreases with inferred Ṁ , as is the
case in some parts of these tracks, the frequency is expected to maintain
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its positive correlation with inferred Ṁ and hence become anticorrelated
to flux, and indeed this has been observed in the Z source GX 17+2
(Wijnands et al. 1997b).

So, the kHz QPOs fit well within the pre-existing Z/atoll description
of LMXB phenomenology in terms of source types and states, including
the fact that position on the tracks in X-ray color-color or hardness-
intensity diagrams (“inferred Ṁ”) and not X-ray flux drives the phe-
nomenology.

8 Strong gravity and dense matter

Potentially kHz QPOs can be used to constrain neutron-star masses and
radii, and to test general relativity. Detection of the predcited innermost
stable circular orbit (ISCO) would constitute the first direct detection of
a strong-field general-relativistic effect and prove that the neutron star
is smaller than the ISCO. This possibility has fascinated since the begin-
ning and was discussed well before the kHz QPOs were found (Kluźniak
and Wagoner 1985, Paczynski 1987, Kluźniak et al. 1990, Kluźniak &
Wilson 1991, Biehle & Blandford 1993). If a kHz QPO is due to or-
bital motion around the neutron star, its frequency can not be larger
than the frequency at the ISCO. Kaaret et al. (1997) proposed that
kHz QPO frequency variations that then seemed uncorrelated to X-ray
flux in 4U 1608−52 and 4U 1636−53 were due to orbital motion near
the ISCO and from this derived neutron star masses of ∼2M⊙. How-
ever, from more detailed studies it is clear now that on short time scales
frequency does in fact correlate to flux in these sources.

The maximum kHz QPO frequencies observed in each source are con-
strained to a narrow range. The 12 atoll sources with twin peaks have
maximum ν2 values in the range 1074–1329Hz; among the Z sources
there are two cases of much lower maximum ν2 values (<900Hz in
GX 5−1 and GX 340+0), while the other four fit in. Zhang et al. (1997b)
proposed that this narrow distribution is caused by the limit set by the
ISCO frequency, which led them to neutron star masses near 2M⊙ as
well. It is in principle possible that the maximum is set by some other
limit on orbital radius (e.g., the neutron star surface), or that it is caused
by the ISCO, but the frequency we observe is not orbital, in which cases
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no mass estimate can be made.

Figure 10: Left: evidence for a leveling off of the kHz QPO frequency with count rate in
4U 1820−30. (Zhang et al. 1998b) Right: a larger data set (see also Kaaret et al. 1999b) of
4U 1820−30 at higher resolution showing only the lower peak’s frequency ν1. (M. Méndez et
al. in prep.).

Miller et al. (1996, 1998a) suggested that when the inner edge of the
accretion disk reaches the ISCO, the QPO frequency might level off and
remain constant while Ṁ continues rising. Later, an apparent leveling
off at ν2=1060±20Hz with X-ray count rate was found in 4U 1820−30
(Zhang et al. 1998b; Fig. 10, left). If this is the orbital frequency at the
ISCO, then the neutron star has a mass mass of ∼2.2M⊙ and is smaller
than its ISCO, and many equations of state are rejected. The leveling off
is also observed as a function of X-ray flux and color (Kaaret et al. 1999b)
and position along the atoll track (Bloser et al. 1999). However, the
frequency vs. flux relations are known in other sources to be variable, and
in 4U 1820−30 the leveling off seems not to be reproduced in the same
way in all data sets (M. Méndez et al. in prep.; Fig. 10, right). It may
also be more gradual in nature than originally suggested. No evidence
for a similar saturation in frequency was seen in other sources, and most
reach higher frequencies. Possibly, the unique aspects of the 4U 1820−30
system are related to this (it is an 11-min binary in a globular cluster
with probably a pure He companion star; Stella et al. 1987a).

If a kHz QPO peak at frequency ν corresponds to stable Keplerian
motion around a neutron star, one can immediately set limits on neutron
star mass M and radius R (Miller et al. 1998a). For a Schwarzschild ge-
ometry: (1) the radius R of the star must be smaller than the radius rK of
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the Keplerian orbit: R < rK = (GM/4π2ν2)1/3, and (2) the radius of the
ISCO must also be smaller than rK , as no stable orbit is possible within
this radius: rISCO = 6GM/c2 < (GM/4π2ν2)1/3 or M < c3/(2π63/2Gν).
Condition (1) is a mass-dependent upper limit on R, and condition (2)
an upper limit on M ; neither limit requires detection of orbital motion
at the ISCO. Fig. 11 (left) shows these limits in the neutron star mass-
radius diagram for ν = 1220Hz, plus an indication of how the excluded
area (hatched) shrinks for higher values of ν. The currently highest value
of ν2, identified in most models with the orbital frequency, is 1329±4Hz
(van Straaten et al. 1999), so the hardest equations of state are beginning
to be imperiled by the method. Corrections for frame dragging (shown
to first order in j in Fig. 11) expand the allowed region. They depend on
the neutron star spin rate νs, and somewhat on the neutron star model,
which sets the relation between νs and angular momentum. For 1329Hz
the above equations imply M < 1.65M⊙ and RNS < 12.4 km; with cor-
rections for a 300Hz spin these numbers become 1.9M⊙ and 15.2 km (van
Straaten et al. 1999). Calculations exploring to what extent kHz QPOs
constrain the EOS have further been performed by Miller et al. (1998b),
Datta et al. (1998), Akmal et al. (1998), Kluźniak (1998), Bulik et
al. (1999), Thampan et al. (1999), Li et al. (1999b), Schaab & Weigel
(1999) and Heiselberg & Hjorth-Jensen (1999). If ∆ν is near νs then the

Figure 11: Constraints on the mass and radius of neutron stars from the detection of orbital
motion with the frequencies indicated. Graphs are for negligible neutron star angular mo-
mentum (left) and for the values of j = cJ/GM2 indicated (right). Mass-radius relations for
some representative EOSs are shown. (Miller et al. 1998a)

18 neutron stars where this quantity has been measured all spin at fre-
quencies between ∼240 and ∼360Hz, a surprisingly narrow range. If the
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stars spin at the magnetospheric equilibrium spin rates (e.g., Frank et al.
1992) corresponding to their current luminosities Lx, this would imply
an unlikely, tight correlation between Lx and neutron-star magnetic-field
strength (White & Zhang 1997; note that a similar possibility came up in
the discussion about the uniformity of the QPO frequencies themselves.
White & Zhang (1997) propose that when rM is small, as is the case
here, it depends only weakly on accretion rate (as it does in some inner
disk models; cf. Ghosh & Lamb 1992, Psaltis & Chakrabarty 1999).
Another possibility is that the spin frequency of accreting neutron stars
is limited by gravitational radiation losses (Bildsten 1998a, Andersson
et al. 1999, see also Levin 1999). If so, then gravitational radiation is
transporting angular momentum out as fast as accretion is transporting
it in, making these sources the brightest gravitational radiation sources
in the sky. They would produce a periodic signature at the neutron star
spin frequency, which would facilitate their detection.
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