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Accretion Disks and Viscosity
Notes on Lecture 10

Formation of an Accretion Disc

Circularization Radius

When the accreting gas has some angular momentum associated with it, then it forms a so
called accretion disc. The accreting gas forms a disc around the central attracting object
and a particular parcel of matter gradually spirals inward, thereby decreasing its negative
gravitational potential energy. There is strong circumstantial evidence that this is the
process by which energy is released in many astronomical systems. The first astronomical
observations in the X-ray band (Giacconi et al. 1962) established the existence of compact
X-ray sources. After the launch in 1970 of the satelliteUhuru, devoted completely to X-ray
astronomy, it was possible to identify several compact X-ray sources with binary stellar
systems. The most plausible model for such system is that the binary contains a neutron
star (or black hole) and another “normal” gaseous star (called “donor star”) of mass𝑀𝑑,
as sketched in Figure 1.

Figure 1. An X-ray binary, with a black hole accretor, an accretion disc and a low mass donor star
(𝑀𝑑 ≲ 1𝑀⊙). The donor star is filling the Roche lobe and transfers gas towards the
accretor via the accretion disc.

Since the gas from the donor star has angular momentum due to the orbital motion of
the donor around the center of mass of the binary, the gas flows towards the compact star
by first forming an accretion disc. The gravitational energy lost is radiated in the form of
X-rays.

Actually, the “accretor” can also be a white dwarf, although in that case the radiation
emitted will not peak in X-rays but in the Optical/UV (for reason connected with the
gravitational potential of the gas in theWD gravitational field, which is much weaker than
in NS or BHs in the innermost regions of the accretion disc). Also the donor can indeed
be different than a normal star, and be for example a brown or a white dwarf.
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If the disc has a semi-thickness ℎ(𝑟) and a radial coordinate 𝑟, then the thin disc model
applies when ℎ(𝑟)/𝑟 ≪ 1. This is true in many (but not all) X-ray binaries, and we will
work under this hypothesis from now on. The thin accretion disc model was studied in
detail in a famous paper1 by Shakura & Sunyaev (1973, Astron. Astrophys., Vol. 24, p. 337
- 355).

When the gas leaves the donor star via the Lagrangian point 𝐿1 (see Fig. 13.12 in S&T),
it has a substantial angular momentum which is equal to the specific orbital angular
momentum. To a good approximation, we can take the stream trajectory as the orbit of a
test particle released from rest at 𝐿1, and thus with a given angular momentum, falling in
the gravitational field of the accretor alone. This would give an elliptical orbit lying in the
binary plane: the presence of the secondary causes this to precess slowly. (The presence
of the donor star changes indeed the effective gravitational potential from the exact 1/𝑟
dependence which is required for closed periodic orbits, as it would be if only the accretor
were present). A continuous stream trying to follow this orbit will therefore intersect
itself, resulting in dissipation of energy via shocks. On the other hand, the gas has little
opportunity to rid itself of the angular momentum it has on leaving 𝐿1, so it will tend to
the orbit of lowest energy for a given angular momentum, i.e., a circular orbit. We thus
expect the gas initially to orbit the primary in the binary plane at a radius 𝑅𝑐𝑖𝑟𝑐 such that
the Kepler orbit at 𝑅𝑐𝑖𝑟𝑐 has the same specific angular momentum as the transferring gas
has on passing through 𝐿1. Thus the gas will have a circular velocity:

𝑣𝜙 = (𝐺𝑀𝑅𝑐𝑖𝑟𝑐
)
1/2

(1)

where we have used cylindrical coordinates (𝑟, 𝜙, 𝑧), with 𝜙 the azimuthal coordinate,𝐺
the universal gravitational constant and𝑀 the central body mass. At this point the gas
flows in a thin ring and has to expand in the radial direction (both inwards and outwards)
to create an accretion disc. The inertial forces of the gas will be given by𝑅𝑐𝑖𝑟𝑐 ⋅ 𝑣𝜙, which for
a typical accretion disc are equal to approximately 1018 cm2 s−1. If the gas was collisionless,
then the flow will proceed along the circularization ring and an accretion disc cannot
form in any circumstance. The real gas flow instead will be an hydrodynamic flow, in
the sense that collisions, and thus viscosity, has an important role. Now, to form a disc
structure starting from a ring, part of the gas in the ring needs to move inward. But this is
not sufficient, since the total angular momentum in the disc must be conserved because
there is no external torque acting on the gas. Thus, to an inward motion there must be
a corresponding outward gas motion. The gas spiraling inward/outward has less/more
angular momentum than the original gas at the circularization radius. The net effect is
that the total angular momentum is conserved and the original gas ring has now expanded
into an extended accretion disc. To have this outward angular momentum transport, we
need viscosity.

1this paper is one of the most cited in all fields of astronomy, with more than 5000 citations at the time
of writing
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The Role of Viscosity

Viscosity is the fluid internal resistance to flow and can be though as the equivalent of a
“fluid friction”. All fluids have a viscosity, except ideal fluids and superfluids. The accreting
gas behaves as a viscous fluid, and viscosity has a fundamental role for at least two reasons:

• for the formation of the accretion disc itself (the outward/inward gas motion)

• for conversion of gravitational potential energy into radiation

However, viscosity is perhaps the most poorly understood property of accreting discs,
despite several decades of intensive research in this field. The reason, which might appear
surprising at first, is that we do not understand completely the origin of viscosity in the
accretion disc gas. Why ? Can’t we treat viscosity just as in normal fluids we know in
everyday life (like water) ? The short answer is: no, we cannot.

The accreting gas flowing at the circularization radius will be laminar or turbulent
according to the Reynold number:

ℜ =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒𝑠
𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠 =

𝑅 𝑣𝜙
𝜈 (2)

where 𝜈 is the viscosity of the gas. In lab experiments, theℜ number gives turbulence when
it is larger than about ∼ 10–1000. Now, suppose the viscosity is given by the molecular
scattering of particles, so that 𝜈𝑚𝑜𝑙 = 𝜆mfp 𝑐𝑠, where 𝜆mfp is the mean free path of gas
particles and 𝑐𝑠 is the sound speed. The molecular scattering is for example responsible for
the viscosity of air or water, just to give two familiar examples. It might appear natural
therefore to extend this also to accretion discs.

If the accreting gas is sufficiently hot, then it will constitute a plasma with each plasma
particle having a mean free path 𝜆mfp ≃ (𝑛𝜎)−1 = (4𝜋 𝑏2𝑐 𝑛)

−1
. Here 𝑛 is the number

density of molecules (or particles in this case) and 𝑏𝑐 is the “impact parameter” for plasma,
which can be determined by considering the electrostatic interaction between the charged
component of the plasma (for typical accretion discs the temperature is ∼ 104 K so a
plasma of electrons and protons is formed, since the gas is mainly composed by Hydrogen
which is ionized above≈ 6500K). The impact parameter can be calculated by equating the
electrostatic potential between𝑍 charges of charge 𝑒 and the thermal temperature of the
plasma. Therefore (𝑍𝑒2) /𝑏𝑐 ≃ (3/2)𝑘𝑏𝑇. Numerically this gives 𝜆mfp ≈ 6× 104 (𝛵

2

𝑛 ) cm
and 𝑐𝑠 ≈ 104𝑇1/2 cm s−1. Therefore the molecular viscosity can be calculated as 𝜈𝑚𝑜𝑙 ≃
6 × 108 𝑇5/2𝑛−1 cm2 s−1. For typical astrophysical accretion disc values (𝑛 ≈ 1015 𝑐𝑚−3,
𝑇 ≈ 104𝐾), the value ofℜwill be extremely high (typical values areℜ > 1014). Therefore
the molecular viscosity is completely irrelevant when compared to inertial forces, and
therefore cannot be that important to determine the formation of an accretion disc (the
situation will be almost identical to the collisionless gas case). To fix ideas, note that
disturbances are propagated by viscous diffusion over a distance 𝑙 on a time scale of order:

𝑡𝑣𝑖𝑠𝑐 ∼ 𝑙2/𝜈 (3)
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where 𝜈 is the molecular viscosity. This timescale is about ∼ 108 years for typical accretion
disc sizes 𝑙 ∼ 1010 cm and 𝜈 = 104 cm2 s−1. This is orders of magnitude too long for the
time variability seen in compact object accretion discs.

Sinceℜ is very large for molecular viscosity, we might conjecture that the gas flow in
accretion discs is also turbulent, although there is, as yet, no proof that this is so. If this
is the case, the flow will be characterized by the size 𝜆𝑡𝑢𝑟𝑏 and turnover velocity 𝑣𝑡𝑢𝑟𝑏 of
the largest turbulent eddies. Since the turbulent motion is completely chaotic about the
mean gas velocity, our simple viscosity calculations apply: there is a turbulent viscosity
𝜈𝑡𝑢𝑟𝑏 = 𝜆𝑡𝑢𝑟𝑏𝑣𝑡𝑢𝑟𝑏. Although this result has a neat appearance, it is here that our troubles
with viscosity really begin. Turbulence is one of the major uncharted areas of classical
physics andwedonotunderstand the onset of turbulence, still less thephysicalmechanisms
involved and how they determine the length-scale, 𝜆𝑡𝑢𝑟𝑛, and turnover velocity 𝑣𝑡𝑢𝑟𝑛. The
mostwe can dowith present knowledge is to place plausible limits on these two parameters.
First, the typical size of the largest turbulent eddies cannot exceed the disc thickness, so
𝜆𝑡𝑢𝑟𝑛 < 𝐻, where we have used the disc scale height 𝐻. Second, it is unlikely that the
turnover velocity is supersonic, for, in this case, the turbulent motions would probably be
thermalized by shocks. Thus, we can write:

𝜈 = 𝛼 𝑐𝑠𝐻 (4)

and expect 𝛼 < 1. This is the so-called 𝛼-prescription of think accretion discs, and all
our ignorance on the viscosity 𝜈 has just been isolated in 𝛼. However, apart from the
rather obvious expectation 𝛼 < 1 we have gained nothing so far. Nonetheless, the 𝛼-
prescription has proved a useful parametrization of our ignorance and has encouraged a
semi-empirical approach to the viscosity problem, which seeks to estimate the magnitude
of 𝛼 by a comparison of theory and observation. There is, for example, some reason to
believe that 𝛼 ∼ 0.1 in accretion discs in accreting white dwarfs, at least some of the time.

Rayleigh Stability

There is however still a fundamental problem in this whole picture, in the sense that
even if we have quite reasonably assumed that turbulence plays a role in determining the
viscosity of the accretion disc, we still have not identified any energy source to sustain
this turbulence. The most obvious solution to this problem is to invoke a hydrodynamic
instability. However, the angular velocityΩ of the gas in the accretion disc scales as 𝑟−3/2

(i.e., Keplerian motion), and therefore the gas will obey the Rayleigh stability criterion:

𝑑 (𝑟2Ω)2

𝑑𝑟 > 0 (5)

The above simple criterion is derived and explained in the Appendix of these notes.
Any realistic accretion disc (in the thin accreton disc case for exampleΩ ∝ 𝑟−3/2) is

therefore linearly stable to pure hydrodynamic perturbations: they satisfy the classical
Rayleigh criterion for axisymmetric perturbation by a safe margin and they are also stable
to non-axisymmetric disturbances. Therefore even if the shear in the mean flow generates
turbulence with the desired transport of angular momentum outward, the Reynolds



High Energy Astrophysics 2022 5

turbulent stress will inevitably decay (because it is Rayleigh stable) unless some other effect
feeds energy back into the turbulence.

Magneto-Rotational Instability (MRI)

A mechanism that currently looks very promising in that it seems to satisfy all the con-
sistency requirements mentioned above and predicts a viscosity of the right magnitude
and sign is magneto-hydrodynamic (MHD) turbulence. MHD turbulence differs from
the hydrodynamic turbulence described above in the sense that magnetic fields have now
an effect on the plasma flow and the Rayleigh stability criterion outlined above does not
apply anymore. Now, it can be demonstrated that with a magnetic field in the plasma, the
stability is guaranteed only if:

𝑑Ω2

𝑑𝑟 > 0 (6)

Therefore for a Keplerian disc withΩ ∝ 𝑟−3/2, the stability criterion is not satisfied and
the disc becomes unstable to axisymmetric perturbations. This idea ofMHD turbulence is
not new, but has received fresh impetus in the context of accretion discs through the recent
rediscovery by Balbus and Hawley (1991) of a weak field instability originally discussed
by Velikhov (1959) and Chandrasekhar (1960, 1961). The addition of a magnetic field
implies that even though the perturbations are still axisymmetric, the angular momentum
of each fluid element is no longer conserved because the magnetic field can apply stresses
whichmove it about.Under these circumstances, instability to axisymmetric perturbations
occurs when the angular velocity decreases outwards.

In an ideal plasma (i.e. a magnetized, perfectly conducting fluid), the action of the
magnetic field is to link neighboring fluid parcels that lie along a common field line. One
property of ideal plasmas is that magnetic field lines are frozen in the fluid parcels, so
that the motion of the fluid carries the magnetic field along with it. This lends itself to a
beautifully simple physical picture of the magnetic forces; the fluid parcels can be thought
of a beads tied together on a string. If for some reason fluid parcels start to diverge, the
tension in the magnetic “string” acts to bring the connected fluid elements back together
(see Figure 2).

Intuitively, we can just think of the magnetic force acting on the fluid as springs tying
neighboring fluid elements together! Normally, we think of a spring as a restoring force,
which tends to preserve a system’s stability. However, if the fluid motion occurs in a
differentially rotating frame, it turns out that this restoring force can actually lead to the
system destabilizing. Imagine that the red particle in Figure 2 is at a radius 𝑟+𝜖with respect
to the blue particle, which is at a radius 𝑟. Here 𝜖 represents an infinitesimal displacement
along the radial accretion disc coordinate. The red particle has therefore a slightly larger
angularmomentum than the blue particle and they start to rotate differentially on different
Keplerian orbits. The blue particle will rotate faster than the red particle (Ω ∝ 𝑟−3/2) and
therefore the “magnetic spring”, that connects the two particles, will pull the red particle.
The pulled red particle will therefore increase its angular momentum, and move further
outward. The blue particle will instead be slowed down by the red particle, and will move
further inward. As the red and blue particles move outward and inward, the situation
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Figure 2. Motion of the fluid parcels (red and blue circles) carries the magnetic field lines (purple
line) along with them. The resultant magnetic forces are shown (red and blue arrows)
which arise due to tension in the field lines.

becomes worse and worse and the process keeps going on (see Figure 3). This is the origin
of the MRI. Now it is clear how an accretion disc can develop from the simple circular
ring of material we started with.

A schematic summary of the MRI goes as follows:

• a) Magnetically connected fluid elements have some initial displacement

• b) Differential rotation increases the displacement, and magnetic tension causes the
inner parcel to slow down, and the outer parcel to speed up

• c) This transfer of angular momentum causes the inner parcel to migrate inwards
and the outer parcel to be pushed outwards.

• d) Repeat from step a, but now with a larger displacement.

However, if the magnetic field is too strong (i.e. the tension in the spring is too strong),
the feedback cycle will not run. The tension will instead cause the displacement between
fluid parcels to oscillate rather than grow in step b).

Accretion disc structure

An accretion disc can conveniently be divided into three distinct regions, depending on 𝑟.
These regions are:

• 1. An outer region, at large r, in which gas pressure dominates radiation pressure
and in which the opacity is controlled by free-free absorption;

• 2. A middle region, at smaller r, in which gas pressure dominates radiation pressure
but the opacity is mainly due to electron scattering; and
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Figure 3. Growth of the MRI due to differential rotation

• 3.An inner region, at very small r, inwhich radiationpressure dominates gas pressure
and again, scattering dominates absorption in the opacity. (For some choices of h,
the inner and middle regions may not exist at all.)

Typically, the transition from the outer to middle region occurs at a radius 𝑟𝑜𝑚 when
�̄�𝑓𝑓 ≃ �̄�𝑒𝑠,which occurs at

2𝑟𝑜𝑚
𝑟𝑠

= 4 × 103 (
�̇�17

𝑀/𝑀⊙
)
2/3

(7)

Here 𝑟𝑠 = 2𝐺𝑀/𝑐2 is the Schwarzschild radius,�̇�17 is in units of1017 g s−1. The transition
from the middle to the inner region (point 𝑟𝑚𝑖) instead can be found when 𝑃𝑔𝑎𝑠 ≃ 𝑃𝑟𝑎𝑑:

2𝑟𝑚𝑖
𝑟𝑠

= 80𝛼2/21 ( 𝑀𝑀⊙
)
−2/3

�̇�16/21
17 (8)

Now, the gas flows in the accretion disc because of some form of turbulent viscosity
(like the MRI sketched above), and this process heats up the disc from the outer regions
towards the innermost part. The viscosity generates entropy (heat) which is released as
thermal radiation. The integrated flux emitted from the top and bottom faces of the disk
at 𝑟 is:

𝐹(𝑟) = ℎ(𝑟)�̇� = 3�̇�
8𝜋 𝑟2

𝐺𝑀
𝑟 [1 − (

𝑟𝛪
𝑟 )
1/2
] (9)

with �̇� the heat production rate, 𝑟𝛪 the innermost disc radius and ℎ the semi-thickness of
the disc at radius r. The curious reader can find the derivation of this equation in §14.5 of
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the textbook S&T. Here we need just to know that this equation is found when assuming
that no heat is stored in the disc but it is totally radiated away, that the disc has a shear flow
and that mass and angular momentum are conserved.

To summarize: the particle leaves the donor at the lagrangian point 𝐿1 and enters the
gravitational potential well of the accretor. The gravitational potential energy is converted
in kinetic energy of the particle that rotates around the circularization radius. The kinetic
energy is then converted into heat by viscosity, which is also responsible for the formation
of the accretion disc. As the disc forms, an inward matter flow starts, with the gas sinking
in the potential well of the accretor. More gravitational potential energy is converted into
kinetic energy, and more kinetic energy is converted into heat. The heat is finally released
as thermal radiation, with the inner regions which are hotter than the outer regions,
because of the energy release of gravitational potential energy. The thermal radiation is
then detected from the distant observer.

Vertical disc structure

So far we have discussed the horizontal structure of a thin accretion disc. The vertical
structure can be calculated very easily by assuming that the gas is in hydrostatic equilibrium
along the vertical coordinate 𝑧. Thismeans that the vertical component of the gravitational
force of the compact object has to be equal to the vertical pressure gradient. Therefore:

1
𝜌
𝑑𝑃
𝑑𝑧 = −𝐺𝑀

𝑟2
𝑧
𝑟 (10)

with 𝑧 ≪ 𝑟. Replacing the differentials with finite differences (that is, settingΔ𝑃 ≈ 𝑃,
where 𝑃 is the pressure at 𝑧 = 0, and settingΔ𝑧 = ℎ) yields:

ℎ = (𝑃𝜌 )
1/2

( 𝑟3

𝐺𝑀)
1/2

≈
𝑐𝑠
Ω (11)

where 𝑐𝑠 is the sound speed in the disc midplane, and where we have used the definition of
the sound speed 𝑐𝑠 = √𝑃/𝜌.

Appendix: The Rayleigh Stability Criterion

Consider a fluid of uniform density rotating differentially around its axis of symmetry
(like an accretion disc). To find the condition for its stability, we suppose that a fluid ring
at a distance 𝑟0 from the axis moving with velocity 𝑣0 is interchanged with a fluid ring
at a greater distance 𝑟1 (i.e., 𝑟1 > 𝑟0) moving with velocity 𝑣1. The system is stable if the
displaced fluid rings tend to return to their initial positions, whereas it is unstable if the
displaced rings move further away. Assuming conservation of angular momentum, we
conclude that the fluid ring displaced from 𝑟0 to 𝑟1 acquires a velocity (𝑟0/𝑟1)𝑣0. The ring
previously at 𝑟1 had a centripetal acceleration 𝑣21/𝑟1, which must have been provided by
the various forces there such as the part of the pressure gradient left after balancing gravity.
The ring brought to 𝑟1 now acquires a centripetal acceleration 𝑟20 𝑣

2
0/𝑟

3
1 to remain in its
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new position. If this is less that 𝑣21/𝑟1, then we expect the forces present there to push the
ring inward towards its initial position. The condition for stability is then

𝑟20 𝑣
2
0

𝑟31
<
𝑣21
𝑟1

(12)

so that:
(𝑟20Ω0)

2 < (𝑟21Ω1)
2

(13)

where Ω𝑛𝑟𝑛 = 𝑣𝑛 is the angular velocity at radius 𝑟𝑛. This stability condition can be
rewritten as:

𝑑 (𝑟2Ω)2

𝑑𝑟 > 0 (14)
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