What is a QPQO?

In this case we would have a purely periodic function,
whose power spectrum would be a sum of delta-
functions (i.e. a pulsation). What if we modulate the
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X-Ray Variability: Propagating Fluctuations?
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Long times scales produced at large distances (turbulent fluctuations of mass
accretion rate ?) and propagate inward on viscous time scale until they reach X-
ray emitting region (within 100 R)

Accretion disks model may produce |/f noise (Lyubarskii 1997 King et al. 2004; Arevalo & Uttley 2006,
Mayer & Pringle 2006, ...)

Explains observed rms-flux correlation (utiey et 212005
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Type-C QPO (Quasi Periodic Oscillation)
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Bardeen-Patterson Effect

L Bardeen & Patterson 1975
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Lense-Thirring Precession

In general relativity, Lense—Thirring precession is
a relativistic correction to the precession of a
gyroscope near a large rotating mass..

Example Period of Lense-Thirring precession
around Earth ~ 33 Myr
around a 10 Msun Black Hole ~ few seconds
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First discovery: Wijnands & van der Klis 1998
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Magnetospheric Accretion

Accretion is possible. Plasma flows along field
lines before landing on the surface.

Strong propeller:Accretion is prevented. Plasma is
ejected by the centrifugal barrier of the magnetic field

Weak propeller: Material is stopped but not ejected
from the system

lllarionov & Sunyaev '75

Spruit & Taam '93
Rappaport+ 04
Ustyugova+ '06
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Useful to probe different region of the
accretion disk!

Can also help to measure physical
characteristics of disk/magnetosphere
interaction region (for magnetized neutron
stars)




Field inflates almost
immediately (ms timescale)
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Pulsar field hardly connected
at all with the disk.
Field line opening unavoidable

Closed

- EEE—
Magnetosphere

E.g., Aly '85, Lovelace+ '95, Goodson+ '97, D’Angelo &
Spruit 2010, Romanova et al. 2008, Patruno et al. 2016



Hydrostatic Equilibrium

with Hydrostatic Equilibrium + EoS you can build a model for your
star (and calculate Mass and Radius)
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Structure of a star (e.g., M-R relation)
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Neutron Stars and Strong Force
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e.g., Lattimer & Prakhash 2011

Gravity + EOS — Neutron Star Structure (M-R).
Invert problem: Gravity + M-R — Eo0S
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Where are the fastest known pulsar?
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